Contents

Preface ................................................................................................................. v
Contributors ....................................................................................................... xi

SECTION I  GENE AND GENOME-EDITING METHODS PART I

1  Design and Validation of CRISPR/Cas9 Systems for Targeted Gene Modification in Induced Pluripotent Stem Cells ......................................................... 3
   Ciaran M. Lee, Haibao Zbu, Timothy H. Davis, Harshahardhan Deshmukh, and Gang Bao

2  Mutagenesis and Genome Engineering of Epstein–Barr Virus in Cultured Human Cells by CRISPR/Cas9 ................................................................. 23
   Kit-San Yuen, Chi-Ping Chan, Kin-Hang Kok, and Dong-Yan Jin

3  Use of CRISPR/Cas Genome Editing Technology for Targeted Mutagenesis in Rice ........................................................................................................ 33
   Rongfang Xu, Pengcheng Wei, and Jianbo Tang

4  All-in-One CRISPR-Cas9/FokI-dCas9 Vector-Mediated Multiplex Genome Engineering in Cultured Cells ................................................................. 41
   Tetsushi Sakuma, Takuya Sakamoto, and Takashi Yamamoto

5  CRISPR/Cas9-Mediated Mutagenesis of Human Pluripotent Stem Cells in Defined Xeno-Free E8 Medium ................................................................. 57
   Chew-Li Soh and Danwei Huangfu

6  Development of CRISPR/Cas9 for Efficient Genome Editing in Toxoplasma gondii ........................................................................................................ 79
   Bang Shen, Kevin Brown, Shaojun Long, and L. David Sibley

SECTION II  GENE AND GENOME-EDITING METHODS PART II

7  Generation of Stable Knockout Mammalian Cells by TALEN-Mediated Locus-Specific Gene Editing ................................................................. 107
   Barun Mahata and Kaushik Biswas

8  Efficient Generation of Gene-Modified Mice by Haploid Embryonic Stem Cell-Mediated Semi-cloned Technology ......................................................... 121
   Cuiqing Zhong and Jinsong Li

9  Insertion of Group II Intron-Based Ribozyme Switches into Homing Endonuclease Genes ...................................................................................... 135
   Tuhin Kumar Guha and Georg Hausner

10 Generating a Genome Editing Nuclease for Targeted Mutagenesis in Human Cells ...................................................................................................... 153
    Zhenyu He and Kehkooi Kee
11 Use of Group II Intron Technology for Targeted Mutagenesis in *Chlamydia trachomatis* ....................................................... 163
Charlotte E. Key and Derek J. Fisher

SECTION III  BIOINFORMATICS APPROACHES FOR IDENTIFYING AND ANALYZING MUTAGENESIS TARGETS

12 In Silico Approaches to Identify Mutagenesis Targets to Probe and Alter Protein–Cofactor and Protein–Protein Functional Relationships . . . . 181
Brian A. Dow, Esha Sehanobish, and Victor L. Davidson
13 In Silico Prediction of Deleteriousness for Nonsynonymous and Splice-Altering Single Nucleotide Variants in the Human Genome . . . . . 191
Xueqiu Jian and Xiaoming Liu
14 In Silico Methods for Analyzing Mutagenesis Targets ..................... 199
Troy C. Messina
15 Methods for Detecting Critical Residues in Proteins ....................... 227
Nurit Haspel and Filip Jagodzinski
16 A Method for Bioinformatic Analysis of Transposon Insertion Sequencing (INSeq) Results for Identification of Microbial Fitness Determinants ............................................. 243
Nengding Wang and Egon A. Ozer

SECTION IV  IN VITRO TRANPOSON MUTAGENESIS METHODS IN DIVERSE PROKARYOTIC SYSTEMS

17 Application of In Vitro Transposon Mutagenesis to Erythromycin Strain Improvement in *Saccharopolyspora erythraea* ..................... 257
J. Mark Weber, Andrew Reeves, William H. Cernota, and Roy K. Wesley
18 Engineering Gram-Negative Microbial Cell Factories Using Transposon Vectors ................................................................. 273
Esteban Martínez-García, Tomás Aparicio, Víctor de Lorenzo, and Pablo I. Nikel
19 PERMutation Using Transposase Engineering (PERMUTE): A Simple Approach for Constructing Circularly Permuted Protein Libraries .... 295
Alicia M. Jones, Joshua T. Atkinson, and Jonathan J. Silberg
20 Transposon Insertion Mutagenesis for Archaeal Gene Discovery ......... 309
Saija Kiljunen, Maria I. Pajunen, and Harri Savilahti
21 Genome-Wide Transposon Mutagenesis in *Mycobacterium tuberculosis* and *Mycobacterium smegmatis* ................................. 321
Gaurav Majumdar, Rendani Mbau, Vinayak Singh, Digby F. Warner, Marte Singsás Dragset, and Raju Mukherjee

SECTION V  SITE-DIRECTED MUTAGENESIS: PCR AND DNA POLYMERASE-BASED METHODS

22 Multiple Site-Directed and Saturation Mutagenesis by the Patch Cloning Method ................................................................. 339
Naohiro Taniguchi and Hiroshi Murakami
23 Seamless Ligation Cloning Extract (Slice) Method Using Cell Lysates from Laboratory *Escherichia coli* Strains and its Application to Slip Site-Directed Mutagenesis ............................................................... 349  
Ken Motohashi

24 Facile Site-Directed Mutagenesis of Large Constructs Using Gibson Isothermal DNA Assembly .......................................................... 359  
Isaac T. Yonemoto and Philip D. Weyman

25 Revised Mechanism and Improved Efficiency of the QuikChange Site-Directed Mutagenesis Method ........................................... 367  
Yongzhen Xia and Luying Xun

26 An In Vitro Single-Primer Site-Directed Mutagenesis Method for Use in Biotechnology ......................................................... 375  
Yanchao Huang and Likui Zhang

27 Use of Megaprimer and Overlapping Extension PCR (OE-PCR) to Mutagenize and Enhance Cyclodextrin Glucosyltransferase (CGTase) Function .......................................................... 385  
Kian Mau Goh, Kok Jun Liew, Kian Piaw Chai, and Rosli Md Illias

SECTION VI  IN VITRO MUTAGENESIS FOR STUDIES OF PROTEIN STRUCTURE AND FUNCTION

28 Step-By-Step In Vitro Mutagenesis: Lessons From Fucose-Binding Lectin PA-IIL .......................................................... 399  
Jana Mrázková, Lenka Malinovská, and Michaela Wimmerová

29 Analytical Methods for Assessing the Effects of Site-Directed Mutagenesis on Protein–Cofactor and Protein–Protein Functional Relationships .......................................................... 421  
Esha Sehanobish, Brian A. Dow, and Victor L. Davidson

30 Biochemical and Biophysical Methods to Examine the Effects of Site-Directed Mutagenesis on Enzymatic Activities and Interprotein Interactions .......................................................... 439  
Misaki Kinoshita, Ju Yae Kim, Yuxi Lin, Natalia Markova, Toshibaru Hase, and Young-Ho Lee

31 Use of Random and Site-Directed Mutagenesis to Probe Protein Structure–Function Relationships: Applied Techniques in the Study of *Helicobacter pylori* ........................................ 461  
Jeannette M. Whitmire and D. Scott Merrell

SECTION VII  RANDOM MUTAGENESIS: NOVEL PCR-BASED METHODS

32 Novel Random Mutagenesis Method for Directed Evolution ............... 483  
Hong Feng, Hai-Tan Wang, and Hong-Yan Zhao

33 Random Mutagenesis by Error-Prone Polymerase Chain Reaction Using a Heavy Water Solvent ......................................................... 491  
Toshifumi Minamoto
Development and Use of a Novel Random Mutagenesis Method:
In Situ Error-Prone PCR (is-epPCR) ........................................... 497

Weilan Shao, Kesen Ma, Yilin Le, Hongcheng Wang, and Chong Sha

Index ........................................................................................................ 507
In Vitro Mutagenesis
Methods and Protocols
Reeves, A. (Ed.)
2017, XV, 511 p. 96 illus., 52 illus. in color., Hardcover
ISBN: 978-1-4939-6470-3
A product of Humana Press