Contents

1 Preliminaries on Financial Markets .. 1
 1.1 A Primer on Banks and Rates ... 2
 1.1.1 Banks and the Federal Funds Rate 2
 1.1.2 Short-Term and Long-Term Rates and Yield Curves 4
 1.2 A Primer on Securities Markets 6
 1.2.1 Securities Markets Organization 6
 1.2.2 Professional Participants in Securities Markets 8
 1.2.3 Bid-Ask Spreads and Market Liquidity 8
 1.2.4 Trading Costs .. 9
 1.3 Economic Indicators That May Affect Financial Markets 10

2 The Time Value of Money .. 13
 2.1 Time .. 14
 2.2 Interest Rate and Return Rate 15
 2.2.1 Interest Rate .. 15
 2.2.2 Required Return Rate and the Risk-Free Rate 16
 2.2.3 Total Return Rate ... 17
 2.3 Simple Interest .. 20
 2.4 Compound Interest ... 21
 2.4.1 Compounding: Nonnegative Integer Number of Periods .. 22
 2.4.2 Compounding: Nonnegative Real Number of Periods 24
 2.4.3 Fractional Compounding Versus Simple Interest 30
 2.4.4 Continuous Compounding 31
 2.5 Generalized Compound Interest 31
 2.5.1 Varying Interest and Varying Compounding Periods 31
 2.5.2 APR Versus APY .. 33
 2.5.3 Geometric Mean Return Versus Arithmetic Mean Return .. 35
 2.6 The Net Present Value and Internal Rate of Return 38
 2.6.1 Present Value and NPV of a Sequence of Net Cash Flows . 38
 2.6.2 The Internal Return Rate 41

2.6.3 NPV and IRR for General Net Cash Flows 42
2.7 Annuity Theory .. 46
 2.7.1 Future and Present Values of Simple Ordinary Annuities .. 47
 2.7.2 Amortization Theory .. 53
 2.7.3 Annuities with Varying Payments and Interest Rates 56
2.8 Applications of Annuities .. 59
 2.8.1 Saving, Borrowing, and Spending 59
 2.8.2 Equity in a House .. 61
 2.8.3 Sinking Funds ... 62
2.9 Applications to Stock Valuation 63
 2.9.1 The Dividend Discount Model 64
 2.9.2 Present Value of Preferred and Common Stocks 65
2.10 Applications to Bond Valuation 66
 2.10.1 Bond Terminologies 66
 2.10.2 Bond Prices Versus Interest Rates and Yield to Maturity 69
2.11 Exercises ... 72
 2.11.1 Conceptual Exercises 72
 2.11.2 Application Exercises 73
 2.11.3 Theoretical Exercises 78

References ... 81

3 Markowitz Portfolio Theory ... 83
 3.1 Markowitz Portfolio Model: The Setup 83
 3.1.1 Security Return Rates 85
 3.1.2 What About Multivariate Normality of Security Return Rates? 87
 3.1.3 Investors and the Efficient Frontier 87
 3.1.4 The One-Period Assumption, Weights, and Short Selling 88
 3.1.5 Expected Portfolio Return Rate 94
 3.1.6 Portfolio Risk .. 96
 3.1.7 Risks and Covariances of the Portfolio’s Securities 96
 3.1.8 Expectation and Volatility of Portfolio Log Return 100
 3.2 Two-Security Portfolio Theory 104
 3.2.1 Preliminaries ... 105
 3.2.2 Efficient Frontier of a Two-Security Portfolio 107
 3.2.3 Reducing Risk Through Diversification 114
 3.3 Efficient Frontier for N Securities with Short Selling 117
 3.3.1 N-Security Portfolio Quantities in Matrix Notation 118
 3.3.2 Derivation of the N-Security Efficient Frontier 120
 3.4 N-Security Efficient Frontier Without Short Selling 126
 3.5 The Mutual Fund Theorem 128
 3.5.1 The Global Minimum-Variance Portfolio 128
 3.5.2 The Diversified Portfolio 130
3.5.3 The Mutual Fund Theorem .. 130
3.6 Investor Utility Function ... 131
3.6.1 Utility Functions and Expected Utility Maximization 131
3.6.2 Risk-Averse, Risk-Neutral, and Risk-Seeking Investors 133
3.7 Diversification and Randomly Selected Securities 138
3.7.1 Mean Portfolio Variance and the Uniform Dirichlet
 Distribution ... 138
3.7.2 Mean Portfolio Variance using the NASDAQ 142
3.8 Exercises .. 143
3.8.1 Conceptual Exercises 143
3.8.2 Application Exercises 144
3.8.3 Theoretical Exercises 146
References ... 149

4 Capital Market Theory and Portfolio Risk Measures 151
4.1 The Capital Market Theory 152
4.1.1 The Capital Market Line (CML) 153
4.1.2 Expected Return and Risk of the Market Portfolio 157
4.1.3 The Capital Asset Pricing Model (CAPM) 158
4.1.4 The Security Market Line (SML) 163
4.1.5 CAPM Security Risk Decomposition 164
4.2 Portfolio Risk Measures .. 165
4.2.1 The Sharpe Ratio .. 166
4.2.2 The Sortino Ratio ... 170
4.2.3 The Maximum Drawdown 172
4.2.4 Quantile Functions 174
4.2.5 Value-at-Risk ... 177
4.2.6 Conditional Value-at-Risk 182
4.2.7 Coherent Risk Measures 183
4.3 Introduction to Linear Factor Models 185
4.3.1 Definition and Intuition 186
4.3.2 Portfolio Variance Decomposition 189
4.3.3 Factor Categorization 191
4.3.4 Alpha and Beta .. 192
4.3.5 CAPM Beta Versus Linear Factor Beta 195
4.3.6 Fama-French Three-Factor Model 196
4.4 Exercises .. 199
4.4.1 Conceptual Exercises 199
4.4.2 Application Exercises 201
4.4.3 Theoretical Exercises 204
References ... 206
5 Binomial Trees and Security Pricing Modeling 209
 5.1 The General Binomial Tree Model of Security Prices 209
 5.2 The Cox-Ross-Rubinstein Tree 218
 5.2.1 The Real-World CRR Tree 219
 5.2.2 The Risk-Neutral CRR Tree 230
 5.3 Continuous-Time Limit of the CRR Pricing Formula 237
 5.3.1 The Lindeberg Central Limit Theorem 237
 5.3.2 The Continuous-Time Security Price Formula 241
 5.4 Basic Properties of Continuous-Time Security Prices 246
 5.4.1 Some Statistical Formulas for Continuous-Time Security Prices ... 246
 5.4.2 Some Probability Formulas for Continuous-Time Security Prices ... 247
 5.5 Exercises ... 249
 5.5.1 Conceptual Exercises 249
 5.5.2 Application Exercises 249
 5.5.3 Theoretical Exercises 251
References ... 252

6 Stochastic Calculus and Geometric Brownian Motion Model 253
 6.1 Stochastic Processes: The Evolution of Randomness 253
 6.1.1 Notation for Probability Spaces 253
 6.1.2 Basic Concepts of Random Variables 257
 6.1.3 Basic Concepts of Stochastic Processes 260
 6.1.4 Convergence of Random Variables 265
 6.1.5 Skewness and Kurtosis 266
 6.2 Filtrations and Adapted Processes 268
 6.2.1 Filtrations: The Evolution of Information 268
 6.2.2 Conditional Expectations: Properties and Intuition .. 270
 6.2.3 Adapted Processes: Definition and Intuition 273
 6.3 Martingales: A Brief Introduction 275
 6.3.1 Basic Concepts .. 275
 6.3.2 Martingale as a Necessary Condition of an Efficient Market ... 277
 6.4 Modeling Security Price Behavior 278
 6.4.1 From Deterministic Model to Stochastic Model 278
 6.4.2 Innovation Processes: An Intuition 279
 6.4.3 Securities Paying a Continuous Cash Dividend 281
 6.5 Brownian Motion .. 282
 6.5.1 Definition of Brownian Motion 282
 6.5.2 Some Properties of Brownian Motion Paths 284
 6.5.3 Visualization of Brownian Paths 285
 6.5.4 Markov Property for Brownian Motion 288
 6.6 Quadratic Variation and Covariation 289
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.6.1 Motivation, Definition, and Notation</td>
<td>289</td>
</tr>
<tr>
<td>6.6.2 Basic Properties</td>
<td>291</td>
</tr>
<tr>
<td>6.6.3 Quadratic Variation and Covariation Properties of BM</td>
<td>293</td>
</tr>
<tr>
<td>6.6.4 Significance of Quadratic Variation</td>
<td>297</td>
</tr>
<tr>
<td>6.7 Itô Integral: A Brief Introduction</td>
<td>299</td>
</tr>
<tr>
<td>6.7.1 Importance of Itô Integral with Respect to BM</td>
<td>299</td>
</tr>
<tr>
<td>6.7.2 Basic Concepts</td>
<td>299</td>
</tr>
<tr>
<td>6.7.3 A Famous Example</td>
<td>301</td>
</tr>
<tr>
<td>6.8 Itô’s Formula for Brownian Motion</td>
<td>302</td>
</tr>
<tr>
<td>6.8.1 Itô Processes</td>
<td>302</td>
</tr>
<tr>
<td>6.8.2 Itô’s Lemma for Brownian Motion</td>
<td>304</td>
</tr>
<tr>
<td>6.8.3 Risk-Neutral Probability Measure</td>
<td>309</td>
</tr>
<tr>
<td>6.8.4 Girsanov Theorem for a Single Brownian Motion</td>
<td>311</td>
</tr>
<tr>
<td>6.9 Geometric Brownian Motion</td>
<td>314</td>
</tr>
<tr>
<td>6.9.1 GBM: Definition</td>
<td>314</td>
</tr>
<tr>
<td>6.9.2 GBM: Basic Properties</td>
<td>315</td>
</tr>
<tr>
<td>6.9.3 Relation Between Binomial Tree Model and GBM Model</td>
<td>317</td>
</tr>
<tr>
<td>6.10 BM as a Limit of Simple Symmetric RW</td>
<td>320</td>
</tr>
<tr>
<td>6.11 Exercises</td>
<td>322</td>
</tr>
<tr>
<td>6.11.1 Conceptual Exercises</td>
<td>322</td>
</tr>
<tr>
<td>6.11.2 Application Exercises</td>
<td>324</td>
</tr>
<tr>
<td>6.11.3 Theoretical Exercises</td>
<td>324</td>
</tr>
<tr>
<td>References</td>
<td>326</td>
</tr>
<tr>
<td>7 Derivatives: Forwards, Futures, Swaps, and Options</td>
<td>329</td>
</tr>
<tr>
<td>7.1 Derivative Securities: An Overview</td>
<td>329</td>
</tr>
<tr>
<td>7.1.1 Basic Concepts</td>
<td>329</td>
</tr>
<tr>
<td>7.1.2 Basic Functions of Derivatives</td>
<td>331</td>
</tr>
<tr>
<td>7.1.3 Characteristics of Derivative Valuation</td>
<td>332</td>
</tr>
<tr>
<td>7.1.4 No-Arbitrage Principle and Law of One Price</td>
<td>334</td>
</tr>
<tr>
<td>7.2 Forwards</td>
<td>337</td>
</tr>
<tr>
<td>7.2.1 Basic Concepts</td>
<td>337</td>
</tr>
<tr>
<td>7.2.2 Forwards on Assets Paying a Continuous Cash Dividend</td>
<td>340</td>
</tr>
<tr>
<td>7.2.3 Forward Price Formula and the Spot-Forward Parity</td>
<td>341</td>
</tr>
<tr>
<td>7.2.4 Forward Value Formula</td>
<td>343</td>
</tr>
<tr>
<td>7.3 Futures</td>
<td>345</td>
</tr>
<tr>
<td>7.3.1 Evolution from Forwards to Futures</td>
<td>345</td>
</tr>
<tr>
<td>7.3.2 Basic Concepts</td>
<td>346</td>
</tr>
<tr>
<td>7.3.3 Impact of Daily Settlement: A Brief Discussion</td>
<td>347</td>
</tr>
<tr>
<td>7.4 Swaps</td>
<td>348</td>
</tr>
<tr>
<td>7.4.1 A Brief Introduction</td>
<td>349</td>
</tr>
<tr>
<td>Section</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>8.7 Option Greeks and Managing Portfolio Risk</td>
<td>433</td>
</tr>
<tr>
<td>8.7.1 Option Greeks for Portfolios and the BSM p.d.e.</td>
<td>433</td>
</tr>
<tr>
<td>8.7.2 Delta-Neutral Portfolios</td>
<td>435</td>
</tr>
<tr>
<td>8.7.3 Delta-Gamma-Neutral Portfolios</td>
<td>438</td>
</tr>
<tr>
<td>8.8 The BSM Model Versus Market Data</td>
<td>440</td>
</tr>
<tr>
<td>8.8.1 Jumps in Security Prices</td>
<td>440</td>
</tr>
<tr>
<td>8.8.2 Skewness and Kurtosis in Security Log Returns</td>
<td>441</td>
</tr>
<tr>
<td>8.8.3 Volatility Skews</td>
<td>445</td>
</tr>
<tr>
<td>8.9 A Step Beyond the BSM Model: Merton Jump Diffusion</td>
<td>448</td>
</tr>
<tr>
<td>8.9.1 Poisson Processes</td>
<td>449</td>
</tr>
<tr>
<td>8.9.2 The MJD Stochastic Process</td>
<td>450</td>
</tr>
<tr>
<td>8.9.3 Illustration of MJD Jump, Skewness, and Kurtosis</td>
<td>456</td>
</tr>
<tr>
<td>8.9.4 No-Arbitrage Condition and Market Incompleteness</td>
<td>458</td>
</tr>
<tr>
<td>8.9.5 Pricing European Calls with an MJD Underlier</td>
<td>461</td>
</tr>
<tr>
<td>8.9.6 MJD Volatility Smile</td>
<td>465</td>
</tr>
<tr>
<td>8.10 A Glimpse Ahead</td>
<td>465</td>
</tr>
<tr>
<td>8.11 Exercises</td>
<td>467</td>
</tr>
<tr>
<td>8.11.1 Conceptual Exercises</td>
<td>467</td>
</tr>
<tr>
<td>8.11.2 Application Exercises</td>
<td>467</td>
</tr>
<tr>
<td>8.11.3 Theoretical Exercises</td>
<td>470</td>
</tr>
<tr>
<td>References</td>
<td>473</td>
</tr>
<tr>
<td>Index</td>
<td>477</td>
</tr>
</tbody>
</table>
An Introduction to Mathematical Finance with Applications
Understanding and Building Financial Intuition
Petters, A.O.; Dong, X.
2016, XVII, 483 p. 52 illus., 12 illus. in color., Hardcover
ISBN: 978-1-4939-3781-3