The Gene Ontology (GO) is the leading project to organize biological knowledge on genes and their products in a formal and consistent way across genomic resources. This has had a profound impact at several levels. First, such standardization has made possible the integration of multiple resources and sources of knowledge, thereby increasing their discoverability and simplifying their usage. Second, it has greatly facilitated—some might say exceedingly so—data mining, aggregate analyses, and other forms of automated knowledge extraction. Third, it has led to an increase in the overall quality of the resources by enforcing minimum requirements across all of them.

Even considering these advantages, the rapid adoption of the GO in the community has been remarkable. In the 15 years since the publication of its introductory article [1], over 100,000 scientific articles containing the keyword “Gene Ontology” have been published and the rate is still increasing (Google Scholar).

However, despite this popularity and widespread use, many aspects of the Gene Ontology remain poorly understood [2], at times even by experts [3]. For instance, unknown to most users, routine procedures such as GO term enrichment analyses remain subject to biases and simplifying assumptions that can lead to spurious conclusions [4].

The objective of this book is to provide a practical, self-contained overview of the GO for biologists and bioinformaticians. After reading this book, we would like the reader to be equipped with the essential knowledge to use the GO and correctly interpret results derived from it. In particular, the book will cover the state of the art of how GO annotations are made, how they are evaluated, and what sort of analyses can and cannot be done with the GO. In the spirit of the Methods in Molecular Biology book series in which it appears, there is an emphasis on providing practical guidance and troubleshooting advice.

The book is intended for a wide scientific audience and makes few assumptions about prior knowledge. While the primary target is the nonexpert, we also hope that seasoned GO users and contributors will find it informative and useful. Indeed, we are the first to admit that working with the GO occasionally brings to mind the aphorism “the more we know, the less we understand.”

The book is structured in six main parts. Part I introduces the reader to the fundamental concepts underlying the Gene Ontology project, with primers on ontologies in general (Chapter 1), on gene function (Chapter 2), and on the Gene Ontology itself (Chapter 3).

To become proficient GO users, we need to know where the GO data comes from. Part II reviews how the GO annotations are made, be it via manual curation of the primary literature (Chapter 4), via computational methods of function inference (Chapter 5), via literature text mining (Chapter 6), or via crowdsourcing and other contributions from the community (Chapter 7).

But can we trust these annotations? In Part III, we consider the problem of evaluating GO annotations. We first provide an overview of the different approaches, the challenges associated with them, but also some successful initiatives (Chapter 8). We then focus on the more specific problem of evaluating enzyme function predictions (Chapter 9). Last, we
reflect on the achievements of the Critical Assessment of protein Function Annotation (CAFA) community experiment (Chapter 10).

Having made and validated GO annotations, we proceed in Part IV to use the GO resource. We consider the various ways of retrieving GO data (Chapter 11), how to quantify the functional similarity of GO terms and genes (Chapter 12), or perform GO enrichment analyses (Chapter 13)—all the while avoiding common biases and pitfalls (Chapter 14). The part ends with a chapter on visualizing GO data (Chapter 15) as well as a tutorial on GO analyses in the programming language Python (Chapter 16).

Part V covers two advanced topics: annotation extensions, which make it possible to express relationships involving multiple terms (Chapter 17), and the evidence code ontology, which provides a more precise and expressive specification of supporting evidence than the traditional GO annotation evidence codes (Chapter 18).

Part VI goes beyond the GO, by considering complementary sources of functional information such as KEGG and Enzyme Commission numbers (Chapter 19), and by considering the potential of integrating GO with controlled clinical nomenclatures (Chapter 20).

The final part concludes the book with a perspective by Suzi Lewis on the past, present, and future of the GO (Chapter 21).

London, UK

Zurich, Switzerland

Christophe Dessimoz

Nives Škunca

References

The Gene Ontology Handbook
Dessimoz, C.; Škunca, N. (Eds.)
2017, XII, 305 p. 56 illus., 50 illus. in color., Hardcover
ISBN: 978-1-4939-3741-7
A product of Humana Press