Contents

Movies accompanying the text are located at: http://rmsbook2ed.engin.umich.edu/movies/

Part I Radiation Damage

1. **The Radiation Damage Event**
 1.1 Neutron–Nucleus Interactions
 1.1.1 Elastic Scattering
 1.1.2 Inelastic Scattering
 1.1.3 (n, 2n) Reactions
 1.1.4 (n, γ) Reactions
 1.2 Interactions Between Ions and Atoms
 1.2.1 Interatomic Potentials
 1.2.2 Collision Kinematics
 1.3 Energy Loss
 1.3.1 Energy Loss Theory
 1.3.2 Range Calculations
 References

2. **The Displacement of Atoms**
 2.1 Elementary Displacement Theory
 2.1.1 Displacement Probability
 2.1.2 The Kinchin and Pease Model for Atom Displacements
 2.1.3 The Displacement Energy
 2.1.4 The Electron Energy Loss Limit
 2.2 Modifications to the K–P Displacement Model
 2.2.1 Consideration of E_d in the Energy Balance
 2.2.2 Realistic Energy Transfer Cross Sections
 2.2.3 Energy Loss by Electronic Excitation
 2.2.4 Effects of Crystallinity

Movies accompanying the text are located at: http://rmsbook2ed.engin.umich.edu/movies/
2.3 The Displacement Cross Section

2.3.1 Elastic Scattering

2.3.2 Inelastic Scattering

2.3.3 \((n, 2n)\) and \((n, \gamma)\) Displacements

2.3.4 Modifications to the K–P Model and Total Displacement Cross Section

2.4 Displacement Rates

2.5 Correlation of Property Changes and Irradiation Dose

2.6 Displacements from Charged Particle Irradiation

References

3 The Damage Cascade

3.1 Displacement Mean Free Path

3.2 Primary Recoil Spectrum

3.3 Cascade Damage Energy and Cascade Volume

3.4 Computer Simulation of Radiation Damage

3.4.1 Binary Collision Approximation (BCA) Method

3.4.2 Molecular Dynamics (MD) Method

3.4.3 Kinetic Monte Carlo (KMC) Method

3.5 Stages of Cascade Development

3.6 Behavior of Defects Within the Cascade

References

4 Point Defect Formation and Diffusion

4.1 Properties of Irradiation-Induced Defects

4.1.1 Interstitials

4.1.2 Multiple Interstitials

4.1.3 Interstitial–Impurity Complexes

4.1.4 Vacancies

4.1.5 Multiple Vacancies

4.1.6 Solute–Defect and Impurity–Defect Clusters

4.2 Thermodynamics of Point Defect Formation

4.3 Diffusion of Point Defects

4.3.1 Macroscopic Description of Diffusion

4.3.2 Mechanisms of Diffusion

4.3.3 Microscopic Description of Diffusion

4.3.4 Jump Frequency, \(\Gamma\)

4.3.5 Jump Frequency, \(\omega\)

4.3.6 Equations for \(D\)

4.4 Correlated Diffusion

4.5 Diffusion in Multicomponent Systems

4.6 Diffusion Along High-Diffusivity Paths

References
5 Radiation-Enhanced Diffusion and Defect Reaction Rate Theory

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1 Point Defect Balance Equations</td>
<td>207</td>
</tr>
<tr>
<td>5.1.1 Case 1: Low Temperature, Low Sink Density</td>
<td>208</td>
</tr>
<tr>
<td>5.1.2 Case 2: Low Temperature, Intermediate Sink Density</td>
<td>210</td>
</tr>
<tr>
<td>5.1.3 Case 3: Low Temperature, High Sink Density</td>
<td>213</td>
</tr>
<tr>
<td>5.1.4 Case 4: High Temperature</td>
<td>216</td>
</tr>
<tr>
<td>5.1.5 Properties of the Point Defect Balance Equations</td>
<td>219</td>
</tr>
<tr>
<td>5.1.6 Deficiencies of the Simple Point Defect Balance Model</td>
<td>220</td>
</tr>
<tr>
<td>5.1.7 Point Defect Balance Equations in the Presence of Cascades</td>
<td>221</td>
</tr>
<tr>
<td>5.2 Radiation-Enhanced Diffusion</td>
<td>223</td>
</tr>
<tr>
<td>5.3 Defect Reactions</td>
<td>227</td>
</tr>
<tr>
<td>5.3.1 Defect Production</td>
<td>229</td>
</tr>
<tr>
<td>5.3.2 Recombination</td>
<td>230</td>
</tr>
<tr>
<td>5.3.3 Loss to Sinks</td>
<td>230</td>
</tr>
<tr>
<td>5.3.4 Sink Strengths</td>
<td>231</td>
</tr>
<tr>
<td>5.4 Reaction Rate-Controlled Processes</td>
<td>232</td>
</tr>
<tr>
<td>5.4.1 Defect–Void Interaction</td>
<td>232</td>
</tr>
<tr>
<td>5.4.2 Defect–Dislocation Interaction</td>
<td>232</td>
</tr>
<tr>
<td>5.5 Diffusion-Limited Reactions</td>
<td>233</td>
</tr>
<tr>
<td>5.5.1 Defect–Void Reactions.</td>
<td>233</td>
</tr>
<tr>
<td>5.5.2 Defect–Dislocation Reactions</td>
<td>236</td>
</tr>
<tr>
<td>5.6 Mixed Rate Control</td>
<td>239</td>
</tr>
<tr>
<td>5.7 Defect–Grain Boundary Reactions</td>
<td>240</td>
</tr>
<tr>
<td>5.8 Coherent Precipitates and Solutes</td>
<td>241</td>
</tr>
<tr>
<td>5.9 Point Defect Recovery</td>
<td>244</td>
</tr>
<tr>
<td>References</td>
<td>252</td>
</tr>
</tbody>
</table>

Part II Physical Effects of Radiation Damage

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 Radiation-Induced Segregation</td>
<td>255</td>
</tr>
<tr>
<td>6.1 Radiation-Induced Segregation in Concentrated Binary Alloys</td>
<td>257</td>
</tr>
<tr>
<td>6.1.1 Solution to the Coupled Partial Differential Equations</td>
<td>259</td>
</tr>
<tr>
<td>6.1.2 Interstitial Binding</td>
<td>265</td>
</tr>
<tr>
<td>6.1.3 Solute Size Effect</td>
<td>266</td>
</tr>
<tr>
<td>6.1.4 Effect of Temperature</td>
<td>268</td>
</tr>
<tr>
<td>6.1.5 Effect of Dose Rate</td>
<td>269</td>
</tr>
<tr>
<td>6.2 RIS in Ternary Alloys</td>
<td>271</td>
</tr>
<tr>
<td>6.3 Effect of Local Composition Changes on RIS</td>
<td>272</td>
</tr>
</tbody>
</table>
8.3 Void Growth ... 409
 8.3.1 Temperature Dependence 415
 8.3.2 Dose Dependence 418
 8.3.3 Role of Dislocations as Biased Sinks 422
 8.3.4 Dose Rate Dependence 425
 8.3.5 Irradiation Variable Shifts 426
 8.3.6 Effect of Production Bias 432
 8.3.7 Stress Dependence 439
 8.3.8 Effect of RIS .. 444
 8.3.9 Void Lattices 447
 8.3.10 Effect of Microstructure and Composition 449
 8.3.11 Effect of Reactor Operating History 460

8.4 Bubbles ... 462
 8.4.1 Bubble Mechanics 463
 8.4.2 Growth Law ... 467
 8.4.3 Bubble Growth by Dislocation Loop Punching 470
 8.4.4 Bubble Lattices 471
 8.4.5 Helium Production 471

References ... 482

9 Phase Stability Under Irradiation 485
 9.1 Radiation-Induced Segregation and Radiation-Induced Precipitation 485
 9.2 Recoil Dissolution 488
 9.3 Radiation Disordering 497
 9.4 Incoherent Precipitate Nucleation 503
 9.5 Coherent Precipitate Nucleation 509
 9.6 Examples of Radiation-Induced Precipitation 512
 9.6.1 Ferritic-Martensitic Steels 513
 9.6.2 Austenitic Stainless Steels 518
 9.7 Metastable Phases 519
 9.7.1 Order-Disorder Transformations 520
 9.7.2 Crystal Structure Transformations 521
 9.7.3 Quasicrystal Formation 523
 9.8 Amorphization ... 523
 9.8.1 Heat of Compound Formation and Crystal Structure Differences 524
 9.8.2 Solubility Range of Compounds and Critical Defect Density 528
 9.8.3 Thermodynamics and Kinetics of Amorphization ... 530
 9.9 Phase Stability in Reactor Core Component Alloys 540

References ... 548
10 **Unique Effects of Ion Irradiation** 551
10.1 Ion Irradiation Techniques .. 552
10.2 Composition Changes .. 554
 10.2.1 Sputtering .. 555
 10.2.2 Gibbsian Adsorption 562
 10.2.3 Recoil Implantation .. 564
 10.2.4 Cascade (Isotropic, Displacement) Mixing 566
 10.2.5 Combination of Processes Affecting Surface Compositional Changes 579
 10.2.6 Implant Redistribution During Ion Implantation 580
10.3 Other Effects of Ion Implantation 585
 10.3.1 Grain Growth ... 585
 10.3.2 Texture ... 587
 10.3.3 Dislocation Microstructure 587
10.4 High-Dose Gas Loading: Blistering and Exfoliation 590
10.5 Solid Phases and Inert Gas Bubble Lattices 595
10.6 Displacements Due to Electronic Excitation 596
10.7 Ion Beam-Assisted Deposition 598
 10.7.1 Microstructure .. 599
 10.7.2 Residual Stress ... 608
 10.7.3 Film Texture .. 616
References ... 628

11 **Emulating Neutron Irradiation Effects with Ions** 631
11.1 Motivation for Using Ion Irradiation as a Surrogate for Neutron Irradiation 631
11.2 Review of Aspects of Radiation Damage Relevant to Ion Irradiation 633
11.3 Particle-Type Dependence of RIS 637
11.4 Advantages and Disadvantages of the Various Particle Types 643
 11.4.1 Electrons ... 644
 11.4.2 Heavy Ions ... 647
 11.4.3 Protons .. 649
11.5 Irradiation Parameters for Particle Irradiations 650
11.6 Emulation of Neutron Irradiation Damage with Proton Irradiation 652
11.7 Emulation of Neutron Irradiation Damage with Self-Ion Irradiation 659
References ... 664
Part III Mechanical and Environmental Effects of Radiation Damage

12 Irradiation Hardening and Deformation

12.1 Elastic and Plastic Deformation

- **12.1.1 Elasticity** 670
- **12.1.2 Plasticity** 675
- **12.1.3 Tension Test** 677
- **12.1.4 Yield Strength** 682

12.2 Irradiation Hardening

- **12.2.1 Source Hardening** 684
- **12.2.2 Friction Hardening** 686
- **12.2.3 Superposition of Hardening Mechanisms** 696
- **12.2.4 Hardening in Polycrystals** 701
- **12.2.5 Saturation of Irradiation Hardening** 704
- **12.2.6 Comparison of Measured and Predicted Hardening** 707
- **12.2.7 Radiation Anneal Hardening** 711
- **12.2.8 The Correlation Between Hardness and Yield Strength** 712

12.3 Deformation in Irradiated Metals

- **12.3.1 Localized Deformation** 719
- **12.3.2 Deformation Mechanism Maps** 723

References

- .. 731

13 Irradiation Creep and Growth

13.1 Thermal Creep

- **13.1.1 Dislocation Creep** 740
- **13.1.2 Diffusional Creep** 747

13.2 Irradiation Creep

- **13.2.1 Stress-Induced Preferential Nucleation of Loops (SIPN)** 750
- **13.2.2 Stress-Induced Preferential Absorption (SIPA)** 755
- **13.2.3 Climb and Glide Due to Preferential Absorption Glide (PAG)** .. 758
- **13.2.4 Climb and Glide Driven by Dislocation Bias** 760
- **13.2.5 Transient Creep** 761
- **13.2.6 Loop Unfaulting** 765
- **13.2.7 Recovery Creep** 766
- **13.2.8 Diffusional Creep: Why There Is No Effect of Irradiation** 767
- **13.2.9 Comparison of Theory with Creep Data** 768
- **13.2.10 Irradiation-Modified Deformation Mechanism Map** 773
13.3 Irradiation Growth and Creep in Zirconium Alloys
13.3.1 Microstructure of Irradiated Zirconium Alloys
13.3.2 Irradiation Growth
13.3.3 Irradiation Creep
References

14 Fracture and Embrittlement
14.1 Types of Fracture
14.2 The Cohesive Strength of Metals
14.3 Fracture Mechanics
14.4 Fracture Mechanics Tests
14.5 Elastic-Plastic Fracture Mechanics
14.6 Brittle Fracture
14.7 Irradiation-Induced Embrittlement in Ferritic Steels
14.7.1 Notched Bar Impact Testing
14.7.2 DBTT and Reduction in the Upper Shelf Energy
14.7.3 Master Curve Approach
14.7.4 Factors Affecting the Degree of Embrittlement
14.7.5 Embrittlement of Ferritic-Martensitic Steels
14.7.6 Annealing and Re-Irradiation
14.7.7 Fatigue
14.8 Fracture and Fatigue of Austenitic Alloys at Low to Intermediate Temperatures
14.8.1 Effect of Irradiation on Fracture Toughness
14.8.2 Effect of Irradiation on Fatigue
14.9 High-Temperature Embrittlement
14.9.1 Grain Boundary Voids and Bubbles
14.9.2 Grain Boundary Sliding
14.9.3 Grain Boundary Crack Growth
14.9.4 Fracture Mechanism Maps
References

15 Corrosion and Stress Corrosion Cracking Fundamentals
15.1 Forms of Corrosion
15.2 Thermodynamics of Corrosion
15.2.1 The Driving Force for Corrosion
15.2.2 EMF Series and Sign Conventions
15.2.3 Stability (Pourbaix) Diagrams
15.3 Kinetics of Corrosion
15.4 Polarization
15.4.1 Mixed Potential Theory
15.4.2 Galvanic Couples
15.4.3 Anode/Cathode Area Ratio
15.4.4 Multiple Cathodic Reactions
15.4.5 Other Types of Polarization
References
15.5 Passivity .. 904
 15.5.1 Theories of Passivation 908
 15.5.2 Behavior of an Active–Passive Metal in Acid 909
 15.5.3 Factors Affecting Active–Passive Corrosion Behavior .. 910
 15.5.4 Control of Passivity 912
 15.5.5 Galvanic Couples of Active–Passive Metals 916
 15.5.6 Pitting of Passive Metals 918
15.6 Crevice Corrosion ... 920
15.7 Stress Corrosion Cracking 922
 15.7.1 SCC Tests .. 924
 15.7.2 SCC Processes .. 926
 15.7.3 Metallurgical Condition 928
 15.7.4 Crack Initiation and Crack Propagation 929
 15.7.5 Thermodynamics of SCC 931
 15.7.6 Kinetics of SCC ... 933
 15.7.7 Mechanisms of Stress Corrosion Cracking 934
 15.7.8 Predictive Model for Crack Propagation 937
 15.7.9 Mechanical Fracture Models 939
 15.7.10 Corrosion Fatigue .. 941
 15.7.11 Hydrogen Embrittlement 941
References ... 949

16 Effects of Irradiation on Corrosion and Environmentally
 Assisted Cracking .. 951
 16.1 Effects of Irradiation on Water Chemistry 954
 16.1.1 Radiolysis and Its Effect on Corrosion Potential .. 954
 16.1.2 Effects of Corrosion Potential on Oxidation 957
 16.1.3 Effects of Corrosion Potential on IASCC 958
 16.2 Effects of Irradiation on Oxidation 958
 16.3 Effects of Irradiation on Stress Corrosion Cracking 961
 16.3.1 Austenitic Alloys 961
 16.3.2 Ferritic Alloys .. 971
 16.4 Mechanisms of IASCC 972
 16.4.1 Grain Boundary Chromium Depletion 972
 16.4.2 Irradiation Hardening 975
 16.4.3 Deformation Mode 976
 16.4.4 Models for IASCC 979
 16.4.5 Selective Internal Oxidation 981
 16.4.6 Irradiation-Induced Creep 981
References ... 983

Index ... 987
Fundamentals of Radiation Materials Science
Metals and Alloys
Was, G.S.
2017, XXVII, 1002 p. 625 illus., 448 illus. in color., Hardcover