Contents

Movies accompanying the text are located at: http://rmsbook2ed.engin.umich.edu/movies/

Part I Radiation Damage

1 The Radiation Damage Event ... 3
1.1 Neutron–Nucleus Interactions 4
 1.1.1 Elastic Scattering ... 4
 1.1.2 Inelastic Scattering .. 12
 1.1.3 (n, 2n) Reactions ... 14
 1.1.4 (n, γ) Reactions ... 16
1.2 Interactions Between Ions and Atoms 18
 1.2.1 Interatomic Potentials 19
 1.2.2 Collision Kinematics .. 26
1.3 Energy Loss .. 45
 1.3.1 Energy Loss Theory ... 45
 1.3.2 Range Calculations .. 60

References ... 75

2 The Displacement of Atoms .. 77
2.1 Elementary Displacement Theory 77
 2.1.1 Displacement Probability 78
 2.1.2 The Kinchin and Pease Model for Atom Displacements ... 80
 2.1.3 The Displacement Energy 82
 2.1.4 The Electron Energy Loss Limit 87
2.2 Modifications to the K–P Displacement Model 90
 2.2.1 Consideration of E_d in the Energy Balance 90
 2.2.2 Realistic Energy Transfer Cross Sections 90
 2.2.3 Energy Loss by Electronic Excitation 92
 2.2.4 Effects of Crystallinity 95

Movies accompanying the text are located at: http://rmsbook2ed.engin.umich.edu/movies/
2.3 The Displacement Cross Section

2.3.1 Elastic Scattering

2.3.2 Inelastic Scattering

2.3.3 \((n, 2n)\) and \((n, \gamma)\) Displacements

2.3.4 Modifications to the K–P Model and Total Displacement Cross Section

2.4 Displacement Rates

2.5 Correlation of Property Changes and Irradiation Dose

2.6 Displacements from Charged Particle Irradiation

References

3 The Damage Cascade

3.1 Displacement Mean Free Path

3.2 Primary Recoil Spectrum

3.3 Cascade Damage Energy and Cascade Volume

3.4 Computer Simulation of Radiation Damage

3.4.1 Binary Collision Approximation (BCA) Method

3.4.2 Molecular Dynamics (MD) Method

3.4.3 Kinetic Monte Carlo (KMC) Method

3.5 Stages of Cascade Development

3.6 Behavior of Defects Within the Cascade

References

4 Point Defect Formation and Diffusion

4.1 Properties of Irradiation-Induced Defects

4.1.1 Interstitials

4.1.2 Multiple Interstitials

4.1.3 Interstitial–Impurity Complexes

4.1.4 Vacancies

4.1.5 Multiple Vacancies

4.1.6 Solute–Defect and Impurity–Defect Clusters

4.2 Thermodynamics of Point Defect Formation

4.3 Diffusion of Point Defects

4.3.1 Macroscopic Description of Diffusion

4.3.2 Mechanisms of Diffusion

4.3.3 Microscopic Description of Diffusion

4.3.4 Jump Frequency, \(\Gamma\)

4.3.5 Jump Frequency, \(\omega\)

4.3.6 Equations for \(D\)

4.4 Correlated Diffusion

4.5 Diffusion in Multicomponent Systems

4.6 Diffusion Along High-Diffusivity Paths

References
5 Radiation-Enhanced Diffusion and Defect Reaction Rate Theory

- **5.1 Point Defect Balance Equations**
 - 5.1.1 Case 1: Low Temperature, Low Sink Density
 - 5.1.2 Case 2: Low Temperature, Intermediate Sink Density
 - 5.1.3 Case 3: Low Temperature, High Sink Density
 - 5.1.4 Case 4: High Temperature
 - 5.1.5 Properties of the Point Defect Balance Equations
 - 5.1.6 Deficiencies of the Simple Point Defect Balance Model
 - 5.1.7 Point Defect Balance Equations in the Presence of Cascades
- **5.2 Radiation-Enhanced Diffusion**
- **5.3 Defect Reactions**
 - 5.3.1 Defect Production
 - 5.3.2 Recombination
 - 5.3.3 Loss to Sinks
 - 5.3.4 Sink Strengths
- **5.4 Reaction Rate-Controlled Processes**
 - 5.4.1 Defect–Void Interaction
 - 5.4.2 Defect–Dislocation Interaction
- **5.5 Diffusion-Limited Reactions**
 - 5.5.1 Defect–Void Reactions
 - 5.5.2 Defect–Dislocation Reactions
- **5.6 Mixed Rate Control**
- **5.7 Defect–Grain Boundary Reactions**
- **5.8 Coherent Precipitates and Solutes**
- **5.9 Point Defect Recovery**

References

Part II Physical Effects of Radiation Damage

- **6 Radiation-Induced Segregation**
 - 6.1 Radiation-Induced Segregation in Concentrated Binary Alloys
 - 6.1.1 Solution to the Coupled Partial Differential Equations
 - 6.1.2Interstitial Binding
 - 6.1.3 Solute Size Effect
 - 6.1.4 Effect of Temperature
 - 6.1.5 Effect of Dose Rate
 - 6.2 RIS in Ternary Alloys
 - 6.3 Effect of Local Composition Changes on RIS
6.4 Effect of Solutes on RIS .. 281
6.5 Examples of RIS in Austenitic Alloys 284
6.6 RIS in Ferritic Alloys ... 288
6.7 Effect of Grain Boundary Structure on RIS 293
References .. 298

7 Dislocation Microstructure ... 301
7.1 Dislocation Lines .. 301
7.1.1 Dislocation Motion .. 303
7.1.2 Description of a Dislocation 308
7.1.3 Displacements, Strains, and Stresses 310
7.1.4 Energy of a Dislocation 314
7.1.5 Line Tension of a Dislocation 316
7.1.6 Forces on a Dislocation .. 319
7.1.7 Interactions Between Dislocations 323
7.1.8 Extended Dislocations .. 327
7.1.9 Kinks and Jogs .. 329
7.2 Faulted Loops and Stacking Fault Tetrahedra 329
7.3 Defect Clusters ... 332
7.3.1 Fraction of Defects Forming Clusters 333
7.3.2 Types of Clusters .. 337
7.3.3 Cluster Mobility ... 341
7.4 Extended Defects ... 345
7.5 Effective Defect Production 349
7.6 Nucleation and Growth of Dislocation Loops 350
7.6.1 Loop Nucleation ... 351
7.6.2 Clustering Theory ... 358
7.6.3 Cluster Evolution Via Cluster Dynamics Modeling 360
7.7 Dislocation Loop Growth ... 362
7.8 Recovery ... 367
7.9 Evolution of the Interstitial Loop Microstructure 368
References .. 377

8 Irradiation-Induced Voids and Bubbles 379
8.1 Void Nucleation .. 381
8.1.1 Equilibrium Void Size Distribution 381
8.1.2 Void Nucleation Rate ... 384
8.1.3 Effect of Inert Gas .. 393
8.1.4 Void Nucleation with Production Bias 399
8.2 Treatment of Defect Sinks in the Growth of Voids 401
8.2.1 Defect Absorption Rates and Concentrations at Sink Surfaces ... 403
8.2.2 Point Defect Balances ... 408
8.3 Void Growth .. 409
8.3.1 Temperature Dependence 415
8.3.2 Dose Dependence 418
8.3.3 Role of Dislocations as Biased Sinks 422
8.3.4 Dose Rate Dependence 425
8.3.5 Irradiation Variable Shifts 426
8.3.6 Effect of Production Bias 432
8.3.7 Stress Dependence 439
8.3.8 Effect of RIS 444
8.3.9 Void Lattices 447
8.3.10 Effect of Microstructure and Composition .. 449
8.3.11 Effect of Reactor Operating History 460
8.4 Bubbles .. 462
8.4.1 Bubble Mechanics 463
8.4.2 Growth Law 467
8.4.3 Bubble Growth by Dislocation Loop Punching 470
8.4.4 Bubble Lattices 471
8.4.5 Helium Production 471
References .. 482

9 Phase Stability Under Irradiation 485
9.1 Radiation-Induced Segregation and Radiation-Induced Precipitation 485
9.2 Recoil Dissolution 488
9.3 Radiation Disordering 497
9.4 Incoherent Precipitate Nucleation 503
9.5 Coherent Precipitate Nucleation 509
9.6 Examples of Radiation-Induced Precipitation 512
9.6.1 Ferritic–Martensitic Steels 513
9.6.2 Austenitic Stainless Steels 518
9.7 Metastable Phases 519
9.7.1 Order–Disorder Transformations 520
9.7.2 Crystal Structure Transformations 521
9.7.3 Quasicrystal Formation 523
9.8 Amorphization 523
9.8.1 Heat of Compound Formation and Crystal Structure Differences 524
9.8.2 Solubility Range of Compounds and Critical Defect Density 528
9.8.3 Thermodynamics and Kinetics of Amorphization 530
9.9 Phase Stability in Reactor Core Component Alloys 540
References .. 548
10 Unique Effects of Ion Irradiation

10.1 Ion Irradiation Techniques
10.2 Composition Changes
 10.2.1 Sputtering
 10.2.2 Gibbsian Adsorption
 10.2.3 Recoil Implantation
 10.2.4 Cascade (Isotropic, Displacement) Mixing
 10.2.5 Combination of Processes Affecting Surface Compositional Changes
 10.2.6 Implant Redistribution During Ion Implantation
10.3 Other Effects of Ion Implantation
 10.3.1 Grain Growth
 10.3.2 Texture
 10.3.3 Dislocation Microstructure
10.4 High-Dose Gas Loading: Blistering and Exfoliation
10.5 Solid Phases and Inert Gas Bubble Lattices
10.6 Displacements Due to Electronic Excitation
10.7 Ion Beam-Assisted Deposition
 10.7.1 Microstructure
 10.7.2 Residual Stress
 10.7.3 Film Texture

References

11 Emulating Neutron Irradiation Effects with Ions

11.1 Motivation for Using Ion Irradiation as a Surrogate for Neutron Irradiation
11.2 Review of Aspects of Radiation Damage Relevant to Ion Irradiation
11.3 Particle-Type Dependence of RIS
11.4 Advantages and Disadvantages of the Various Particle Types
 11.4.1 Electrons
 11.4.2 Heavy Ions
 11.4.3 Protons
11.5 Irradiation Parameters for Particle Irradiations
11.6 Emulation of Neutron Irradiation Damage with Proton Irradiation
11.7 Emulation of Neutron Irradiation Damage with Self-Ion Irradiation

References
Part III Mechanical and Environmental Effects of Radiation Damage

12 Irradiation Hardening and Deformation 669
 12.1 Elastic and Plastic Deformation 670
 12.1.1 Elasticity ... 670
 12.1.2 Plasticity ... 675
 12.1.3 Tension Test 677
 12.1.4 Yield Strength 682
 12.2 Irradiation Hardening ... 683
 12.2.1 Source Hardening 684
 12.2.2 Friction Hardening 686
 12.2.3 Superposition of Hardening Mechanisms 696
 12.2.4 Hardening in Polycrystals 701
 12.2.5 Saturation of Irradiation Hardening 704
 12.2.6 Comparison of Measured and Predicted Hardening 707
 12.2.7 Radiation Anneal Hardening 711
 12.2.8 The Correlation Between Hardness and Yield Strength 712
 12.3 Deformation in Irradiated Metals 716
 12.3.1 Localized Deformation 719
 12.3.2 Deformation Mechanism Maps 723

References ... 731

13 Irradiation Creep and Growth 735
 13.1 Thermal Creep ... 736
 13.1.1 Dislocation Creep 740
 13.1.2 Diffusional Creep 747
 13.2 Irradiation Creep ... 750
 13.2.1 Stress-Induced Preferential Nucleation of Loops (SIPN) 750
 13.2.2 Stress-Induced Preferential Absorption (SIPA) 755
 13.2.3 Climb and Glide Due to Preferential Absorption Glide (PAG) 758
 13.2.4 Climb and Glide Driven by Dislocation Bias 760
 13.2.5 Transient Creep 761
 13.2.6 Loop Unfaulting 765
 13.2.7 Recovery Creep 766
 13.2.8 Diffusional Creep: Why There Is No Effect of Irradiation 767
 13.2.9 Comparison of Theory with Creep Data 768
 13.2.10 Irradiation-Modified Deformation Mechanism Map 773
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.3</td>
<td>Irradiation Growth and Creep in Zirconium Alloys</td>
<td>774</td>
</tr>
<tr>
<td>13.3.1</td>
<td>Microstructure of Irradiated Zirconium Alloys</td>
<td>776</td>
</tr>
<tr>
<td>13.3.2</td>
<td>Irradiation Growth</td>
<td>777</td>
</tr>
<tr>
<td>13.3.3</td>
<td>Irradiation Creep</td>
<td>781</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>790</td>
</tr>
<tr>
<td>14</td>
<td>Fracture and Embrittlement</td>
<td>793</td>
</tr>
<tr>
<td>14.1</td>
<td>Types of Fracture</td>
<td>793</td>
</tr>
<tr>
<td>14.2</td>
<td>The Cohesive Strength of Metals</td>
<td>794</td>
</tr>
<tr>
<td>14.3</td>
<td>Fracture Mechanics</td>
<td>797</td>
</tr>
<tr>
<td>14.4</td>
<td>Fracture Mechanics Tests</td>
<td>804</td>
</tr>
<tr>
<td>14.5</td>
<td>Elastic-Plastic Fracture Mechanics</td>
<td>805</td>
</tr>
<tr>
<td>14.6</td>
<td>Brittle Fracture</td>
<td>808</td>
</tr>
<tr>
<td>14.7</td>
<td>Irradiation-Induced Embrittlement in Ferritic Steels</td>
<td>814</td>
</tr>
<tr>
<td>14.7.1</td>
<td>Notched Bar Impact Testing</td>
<td>815</td>
</tr>
<tr>
<td>14.7.2</td>
<td>DBTT and Reduction in the Upper Shelf Energy</td>
<td>817</td>
</tr>
<tr>
<td>14.7.3</td>
<td>Master Curve Approach</td>
<td>819</td>
</tr>
<tr>
<td>14.7.4</td>
<td>Factors Affecting the Degree of Embrittlement</td>
<td>822</td>
</tr>
<tr>
<td>14.7.5</td>
<td>Embrittlement of Ferritic-Martensitic Steels</td>
<td>827</td>
</tr>
<tr>
<td>14.7.6</td>
<td>Annealing and Re-Irradiation</td>
<td>828</td>
</tr>
<tr>
<td>14.7.7</td>
<td>Fatigue</td>
<td>830</td>
</tr>
<tr>
<td>14.8</td>
<td>Fracture and Fatigue of Austenitic Alloys at Low to Intermediate Temperatures</td>
<td>834</td>
</tr>
<tr>
<td>14.8.1</td>
<td>Effect of Irradiation on Fracture Toughness</td>
<td>834</td>
</tr>
<tr>
<td>14.8.2</td>
<td>Effect of Irradiation on Fatigue</td>
<td>837</td>
</tr>
<tr>
<td>14.9</td>
<td>High-Temperature Embrittlement</td>
<td>838</td>
</tr>
<tr>
<td>14.9.1</td>
<td>Grain Boundary Voids and Bubbles</td>
<td>840</td>
</tr>
<tr>
<td>14.9.2</td>
<td>Grain Boundary Sliding</td>
<td>845</td>
</tr>
<tr>
<td>14.9.3</td>
<td>Grain Boundary Crack Growth</td>
<td>847</td>
</tr>
<tr>
<td>14.9.4</td>
<td>Fracture Mechanism Maps</td>
<td>849</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>855</td>
</tr>
<tr>
<td>15</td>
<td>Corrosion and Stress Corrosion Cracking Fundamentals</td>
<td>857</td>
</tr>
<tr>
<td>15.1</td>
<td>Forms of Corrosion</td>
<td>858</td>
</tr>
<tr>
<td>15.2</td>
<td>Thermodynamics of Corrosion</td>
<td>862</td>
</tr>
<tr>
<td>15.2.1</td>
<td>The Driving Force for Corrosion</td>
<td>862</td>
</tr>
<tr>
<td>15.2.2</td>
<td>EMF Series and Sign Conventions</td>
<td>866</td>
</tr>
<tr>
<td>15.2.3</td>
<td>Stability (Pourbaix) Diagrams</td>
<td>871</td>
</tr>
<tr>
<td>15.3</td>
<td>Kinetics of Corrosion</td>
<td>879</td>
</tr>
<tr>
<td>15.4</td>
<td>Polarization</td>
<td>889</td>
</tr>
<tr>
<td>15.4.1</td>
<td>Mixed Potential Theory</td>
<td>889</td>
</tr>
<tr>
<td>15.4.2</td>
<td>Galvanic Couples</td>
<td>891</td>
</tr>
<tr>
<td>15.4.3</td>
<td>Anode/Cathode Area Ratio</td>
<td>896</td>
</tr>
<tr>
<td>15.4.4</td>
<td>Multiple Cathodic Reactions</td>
<td>897</td>
</tr>
<tr>
<td>15.4.5</td>
<td>Other Types of Polarization</td>
<td>898</td>
</tr>
</tbody>
</table>
Fundamentals of Radiation Materials Science
Metals and Alloys
Was, G.S.
2017, XXVII, 1002 p. 625 illus., 448 illus. in color., Hardcover