Contents

1 Propositional Logic: Proofs from Axioms and Inference Rules 1
 1.1 Introduction ... 1
 1.1.1 An Example Demonstrating the Use of Logic in
 Real Life .. 2
 1.2 The Pure Propositional Calculus .. 4
 1.2.1 Formulae, Axioms, Inference Rules, and Proofs 5
 1.3 The Pure Positive Implicational Propositional Calculus 9
 1.3.1 Examples of Proofs in the Implicational Calculus 9
 1.3.2 Derived Rules: Implications Subject to Hypotheses 11
 1.3.3 A Guide for Proofs: an Implicational Deduction Theorem 14
 1.3.4 Example: Law of Assertion from the Deduction Theorem ... 18
 1.3.5 More Examples to Design Proofs of
 Implicational Theorems .. 21
 1.3.6 Another Guide for Proofs: Substitutivity of Equivalences 23
 1.3.7 More Derived Rules of Inference ... 25
 1.3.8 The Laws of Commutation and of Assertion 27
 1.3.9 Exercises on the Classical Implicational Calculus 28
 1.3.10 Equivalent Implicational Axiom Systems 29
 1.3.11 Exercises on Kleene’s Axioms ... 30
 1.3.12 Exercises on Tarski’s Axioms .. 31
 1.4 Proofs by the Converse Law of Contraposition 32
 1.4.1 Examples of Proofs in the Full Propositional Calculus 32
 1.4.2 Guides for Proofs in the Propositional Calculus 34
 1.4.3 Proofs by Reductio ad Absurdum 35
 1.4.4 Proofs by Cases .. 36
 1.4.5 Exercises on Frege’s and Church’s Axioms 37
 1.5 Other Connectives ... 38
 1.5.1 Definitions of Other Connectives .. 38
 1.5.2 Examples of Proofs of Theorems with Conjunctions 38
 1.5.3 Examples of Proofs of Theorems with Equivalences 41
 1.5.4 Examples of Proofs of Theorems with Disjunctions 44
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5.5 Examples of Proofs with Conjunctions and Disjunctions</td>
<td>46</td>
</tr>
<tr>
<td>1.5.6 Exercises on Other Connectives</td>
<td>47</td>
</tr>
<tr>
<td>1.6 Patterns of Deduction with Other Connectives</td>
<td>48</td>
</tr>
<tr>
<td>1.6.1 Conjunctions of Implications</td>
<td>48</td>
</tr>
<tr>
<td>1.6.2 Proofs by Cases or by Contradiction</td>
<td>53</td>
</tr>
<tr>
<td>1.6.3 Exercises on Patterns of Deduction</td>
<td>54</td>
</tr>
<tr>
<td>1.6.4 Equivalent Classical Axiom Systems</td>
<td>55</td>
</tr>
<tr>
<td>1.6.5 Exercises on Kleene’s, Rosser’s, and Tarski’s Axioms</td>
<td>56</td>
</tr>
<tr>
<td>1.7 Completeness, Decidability, Independence, Provability, and Soundness</td>
<td>56</td>
</tr>
<tr>
<td>1.7.1 Multi-Valued Fuzzy Logics</td>
<td>56</td>
</tr>
<tr>
<td>1.7.2 Sound Multi-Valued Fuzzy Logics</td>
<td>57</td>
</tr>
<tr>
<td>1.7.3 Independence and Unprovability</td>
<td>59</td>
</tr>
<tr>
<td>1.7.4 Complete Multi-Valued Fuzzy Logics</td>
<td>61</td>
</tr>
<tr>
<td>1.7.5 Peirce’s Law as a Denial of the Antecedent</td>
<td>62</td>
</tr>
<tr>
<td>1.7.6 Exercises on Church’s and Łukasiewicz’s Triadic Systems</td>
<td>62</td>
</tr>
<tr>
<td>1.8 Boolean Logic</td>
<td>63</td>
</tr>
<tr>
<td>1.8.1 The Truth Table of the Logical Implication</td>
<td>63</td>
</tr>
<tr>
<td>1.8.2 Boolean Logic on Earth and in Space</td>
<td>65</td>
</tr>
<tr>
<td>1.9 Automated Theorem Proving</td>
<td>67</td>
</tr>
<tr>
<td>1.9.1 The Provability Theorem</td>
<td>67</td>
</tr>
<tr>
<td>1.9.2 The Completeness Theorem</td>
<td>69</td>
</tr>
<tr>
<td>1.9.3 Example: Peirce’s Law from the Completeness Theorem</td>
<td>69</td>
</tr>
<tr>
<td>1.9.4 Exercises on the Deduction Theorem</td>
<td>72</td>
</tr>
<tr>
<td>2 First-Order Logic: Proofs with Quantifiers</td>
<td>75</td>
</tr>
<tr>
<td>2.1 Introduction</td>
<td>75</td>
</tr>
<tr>
<td>2.2 The Pure Predicate Calculus of First Order</td>
<td>75</td>
</tr>
<tr>
<td>2.2.1 Logical Predicates</td>
<td>75</td>
</tr>
<tr>
<td>2.2.2 Variables, Quantifiers, and Formulae</td>
<td>77</td>
</tr>
<tr>
<td>2.2.3 Proper Substitutions of Free or Bound Variables</td>
<td>78</td>
</tr>
<tr>
<td>2.2.4 Axioms and Rules for the Pure Predicate Calculus</td>
<td>80</td>
</tr>
<tr>
<td>2.2.5 Exercises on Quantifiers</td>
<td>82</td>
</tr>
<tr>
<td>2.2.6 Examples with Implicational and Predicate Calculi</td>
<td>82</td>
</tr>
<tr>
<td>2.2.7 Examples with Pure Propositional and Predicate Calculi</td>
<td>86</td>
</tr>
<tr>
<td>2.2.8 Other Axiomatic Systems for the Pure Predicate Calculus</td>
<td>87</td>
</tr>
<tr>
<td>2.2.9 Exercises on Kleene’s, Margaris’s, and Rosser’s Axioms</td>
<td>89</td>
</tr>
<tr>
<td>2.3 Methods of Proof for the Pure Predicate Calculus</td>
<td>90</td>
</tr>
<tr>
<td>2.3.1 Substituting Equivalent Formulae</td>
<td>90</td>
</tr>
<tr>
<td>2.3.2 Discharging Hypotheses</td>
<td>91</td>
</tr>
<tr>
<td>2.3.3 Prenex Normal Form</td>
<td>95</td>
</tr>
<tr>
<td>2.3.4 Proofs with More than One Quantifier</td>
<td>96</td>
</tr>
<tr>
<td>2.3.5 Exercises on the Substitutivity of Equivalence</td>
<td>97</td>
</tr>
</tbody>
</table>
2.4 Predicate Calculus with Other Connectives 98
 2.4.1 Universal Quantifiers and Conjunctions or Disjunctions 98
 2.4.2 Existential Quantifiers and Conjunctions or Disjunctions ... 100
 2.4.3 Exercises on Quantifiers with Other Connectives 101
2.5 Equality-Predicates ... 101
 2.5.1 First-Order Predicate Calculi with an Equality-Predicate ... 102
 2.5.2 Simple Applied Predicate Calculi with an Equality-Predicate ... 103
 2.5.3 Other Axiom Systems for the Equality-Predicate 106
 2.5.4 Defined Ranking-Predicates 107
 2.5.5 Exercises on Equality-Predicates 107

3 Set Theory: Proofs by Detachment, Contraposition, and
Contradiction .. 109
3.1 Introduction .. 109
3.2 Sets and Subsets .. 110
 3.2.1 Equality and Extensionality 110
 3.2.2 The Empty Set .. 114
 3.2.3 Subsets and Supersets .. 114
 3.2.4 Exercises on Sets and Subsets 118
3.3 Pairing, Power, and Separation ... 119
 3.3.1 Pairing .. 119
 3.3.2 Power Sets .. 122
 3.3.3 Separation of Sets .. 124
 3.3.4 Exercises on Pairing, Power, and Separation of Sets 126
3.4 Unions and Intersections of Sets .. 127
 3.4.1 Unions of Sets ... 127
 3.4.2 Intersections of Sets .. 132
 3.4.3 Unions and Intersections of Sets 135
 3.4.4 Exercises on Unions and Intersections of Sets 139
3.5 Cartesian Products and Relations 142
 3.5.1 Cartesian Products of Sets 142
 3.5.2 Cartesian Products of Unions and Intersections 147
 3.5.3 Mathematical Relations and Directed Graphs 149
 3.5.4 Exercises on Cartesian Products of Sets 153
3.6 Mathematical Functions ... 154
 3.6.1 Mathematical Functions .. 154
 3.6.2 Images and Inverse Images of Sets by Functions 159
 3.6.3 Exercises on Mathematical Functions 162
3.7 Composite and Inverse Functions 164
 3.7.1 Compositions of Functions 164
 3.7.2 Injective, Surjective, Bijective, and Inverse Functions 166
 3.7.3 The Set of all Functions from a Set to a Set 171
 3.7.4 Exercises on Injective, Surjective, and Inverse Functions ... 173
3.8 Equivalence Relations .. 174
 3.8.1 Reflexive, Symmetric, Transitive, or
 Anti-Symmetric Relations .. 174
 3.8.2 Partitions and Equivalence Relations 175
 3.8.3 Exercises on Equivalence Relations 179
3.9 Ordering Relations ... 180
 3.9.1 Preorders and Partial Orders .. 180
 3.9.2 Total Orders and Well-Orderings 182
 3.9.3 Exercises on Ordering Relations 185
4 Mathematical Induction: Definitions and Proofs by Induction 189
 4.1 Introduction .. 189
 4.2 Mathematical Induction ... 190
 4.2.1 The Axiom of Infinity ... 190
 4.2.2 The Principle of Mathematical Induction 193
 4.2.3 Definitions by Mathematical Induction 195
 4.2.4 Exercises on Mathematical Induction 197
 4.3 Arithmetic with Natural Numbers ... 198
 4.3.1 Addition with Natural Numbers 198
 4.3.2 Multiplication with Natural Numbers 200
 4.3.3 Exercises on Arithmetic by Induction 203
 4.4 Orders and Cancellations ... 205
 4.4.1 Orders on the Natural Numbers 205
 4.4.2 Laws of Arithmetic Cancellations 210
 4.4.3 Exercises on Orders and Cancellations 213
 4.5 Integers ... 214
 4.5.1 Negative Integers ... 214
 4.5.2 Arithmetic with Integers ... 217
 4.5.3 Order on the Integers ... 220
 4.5.4 Nonnegative Integral Powers of Integers 226
 4.5.5 Exercises on Integers with Induction 228
 4.6 Rational Numbers ... 229
 4.6.1 Definition of Rational Numbers 229
 4.6.2 Arithmetic with Rational Numbers 231
 4.6.3 Notation for Sums and Products 237
 4.6.4 Order on the Rational Numbers 241
 4.6.5 Exercises on Rational Numbers 243
 4.7 Finite Cardinality ... 244
 4.7.1 Equal Cardinalities .. 244
 4.7.2 Finite Sets ... 248
 4.7.3 Exercises on Finite Sets ... 252
 4.8 Infinite Cardinality ... 252
 4.8.1 Infinite Sets ... 252
 4.8.2 Denumerable Sets .. 254
 4.8.3 The Bernstein–Cantor–Schröder Theorem 258
4.8.4 Denumerability of all Finite Sequences of Natural Numbers .. 260
4.8.5 Other Infinite Sets ... 262
4.8.6 Further Issues in Cardinality ... 263
4.8.7 Exercises on Infinite Sets 265

5 Well-Formed Sets: Proofs by Transfinite Induction with Already Well-Ordered Sets ... 267
5.1 Introduction ... 267
5.2 Transfinite Methods ... 267
5.2.1 Transfinite Induction ... 267
5.2.2 Transfinite Construction ... 269
5.2.3 Exercises on Transfinite Methods 271
5.3 Transfinite Sets and Ordinals ... 271
5.3.1 Transitive Sets .. 271
5.3.2 Ordinals ... 272
5.3.3 Well-Ordered Sets of Ordinals 274
5.3.4 Unions and Intersections of Sets of Ordinals 275
5.3.5 Exercises on Ordinals .. 276
5.4 Regularity of Well-Formed Sets.. 277
5.4.1 Well-Formed Sets .. 277
5.4.2 Regularity ... 279
5.4.3 Exercises on Well-Formed Sets 281

6 The Axiom of Choice: Proofs by Transfinite Induction 283
6.1 Introduction ... 283
6.2 The Choice Principle ... 283
6.2.1 The Choice-Function Principle 284
6.2.2 The Choice-Set Principle .. 286
6.2.3 Exercises on Choice Principles 288
6.3 Maximali ty and Well-Ordering Principles 288
6.3.1 Zermelo’s Well-Ordering Principle 288
6.3.2 Zorn’s Maximal-Element Principle 290
6.3.3 Exercises on Maximality and Well-Orderings 292
6.4 Unions, Intersections, and Products of Families of Sets 292
6.4.1 The Multiplicative Principle 292
6.4.2 The Distributive Principle 293
6.4.3 Exercises on the Distributive and Multiplicative Principles .. 295
6.5 Equivalence of the Choice, Zorn’s, and Zermelo’s Principles 295
6.5.1 Towers of Sets .. 296
6.5.2 Zorn’s Maximali ty from the Choice Principle 297
6.5.3 Exercises on Towers of Sets ... 299
6.6 Yet Other Principles Related to the Axiom of Choice 299
6.6.1 Yet Other Principles Equivalent to the Axiom of Choice... 299
7 Applications: Nobel-Prize Winning Applications of Sets, Functions, and Relations

7.1 Introduction ... 303
7.2 Game Theory ... 304
 7.2.1 Introduction ... 304
 7.2.2 Mathematical Models for The Prisoner’s Dilemma 305
 7.2.3 Dominant Strategies ... 307
 7.2.4 Mixed Strategies .. 309
 7.2.5 Existence of Nash Equilibria for Two Players with Two Mixed Strategies ... 310
 7.2.6 Exercises on Mathematical Games 313
7.3 Match Making ... 315
 7.3.1 Introduction .. 315
 7.3.2 A Mathematical Model for Optimal Match Making 316
 7.3.3 An Algorithm for Optimal Match Making with a Match Maker ... 317
 7.3.4 An Algorithm for Optimal Match Making Without a Match Maker ... 319
 7.3.5 Exercises on Gale & Shapley’s Algorithms 320
 7.3.6 Projects ... 321
7.4 Arrow’s Impossibility Theorem 321
 7.4.1 Introduction .. 321
 7.4.2 A Mathematical Model for Arrow’s Impossibility Theorem ... 324
 7.4.3 Statement and Proof of Arrow’s Impossibility Theorem .. 326
 7.4.4 Exercises on Arrow’s Impossibility Theorem 330

Solutions to Some Odd-Numbered Exercises 331

References ... 373

Index .. 381
Logic, Mathematics, and Computer Science
Modern Foundations with Practical Applications
Nievergelt, Y.
2015, XII, 391 p. 9 illus., 4 illus. in color., Hardcover
ISBN: 978-1-4939-3222-1