Contents

1 Setting the Stage: Myosin, Actin, Actomyosin and ATP 1
1.1 Introduction .. 1
1.2 Muscle Structure as Observed by Nineteenth Century Microscopy 2
1.3 Revolution in Muscle Physiology: The Pathway to ATP
and the High Energy Phosphate Bond ... 4
 1.3.1 Rise of Biochemistry ... 4
 1.3.2 Lactic Acid Theory of Muscle Contraction 4
 1.3.3 Studies on Muscle Contraction Without Formation
 of Lactic Acid .. 6
 1.3.4 ATP and the High Energy Phosphate Bond 7
 1.3.5 Meyerhof, Lundsgaard and Lohmann: The Later Years 9
1.4 Discovery of “Myosin” and Muscle Birefringence 10
1.5 Albert Szent-Gyorgyi: Myosin, Actin, Actomyosin and Role of ATP 11
1.6 Early Electron Microscopic Studies of Muscle Structure 19
1.7 Some Theories of Muscular Contraction Prior to 1954 21
1.8 Albert Szent-Gyorgyi: The Later Years .. 23
1.9 Thus the Stage Was Set ... 24
References ... 24

2 Birth of the Sliding Filament Model of Muscular Contraction: Proposal 29
2.1 Introduction ... 29
2.2 The Investigators: Andrew Huxley and Rolf Niedergerke, Hugh Huxley
 and Jean Hanson ... 30
2.3 Overlapping Arrays of Filaments and the First Proposal
 of Sliding Filaments ... 38
2.4 Andrew Huxley and the Development of an Interference Microscope 40
Contents

2.5 Birth of Sliding Filaments: Nature, Volume 173, Pages 971–976, May 22, 1954

2.7 Changes in the Cross-Striations of Muscle During Contraction and Stretch and Their Structural Interpretations by Dr. Hugh Huxley and Dr. Jean Hanson. Nature. 173: 973–976, 1954

2.8 Scientific Reception of the Sliding Filament Model of Contraction

References

3 Glory Days: Establishment of the Sliding Filament Model of Muscular Contraction in the 1950s and 1960s

3.1 Introduction

3.2 1957 Was a Very Good Year for the Sliding Filament Model of Muscle Contraction

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.2.1</td>
<td>Myosin Limited to the A band</td>
</tr>
<tr>
<td>3.2.2</td>
<td>Double Hexagonal Array of Filaments</td>
</tr>
<tr>
<td>3.2.3</td>
<td>A Hypothesis for the Mechanism of Contraction</td>
</tr>
</tbody>
</table>

3.3 Myosin, Actin, Thick and Thin Filaments

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.3.1</td>
<td>The Myosin Molecule</td>
</tr>
<tr>
<td>3.3.2</td>
<td>The Actin Molecule and Thin Filaments</td>
</tr>
<tr>
<td>3.3.3</td>
<td>Myosin and Actin Filaments and Filament Polarity</td>
</tr>
<tr>
<td>3.3.4</td>
<td>Cross-Bridge Orientation in Muscle at Rest and in Rigor</td>
</tr>
</tbody>
</table>

3.4 X-Ray Diffraction Studies of Muscles at Rest and During Contraction

3.5 Muscle Length Versus Isometric Force: A Critical Test of the Sliding Filament Hypothesis

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.5.1</td>
<td>“Creep” and Sarcomere Length Irregularity in Contracting Muscle</td>
</tr>
<tr>
<td>3.5.2</td>
<td>The Spot Follower Device and the Muscle Length Versus Isometric Force Relationship</td>
</tr>
</tbody>
</table>

3.6 Swinging-Tilting Cross-Bridge Model of Muscle Contraction

3.7 The Investigators: The Later Years

References

4 Excitation-Contraction Coupling and the Role of Calcium in Contraction and Relaxation in the 1950s and 1960s

4.1 Introduction

4.2 Muscle Excitation and Onset of Contraction

4.3 Inward Spread of Muscle Activation

4.4 Sarcoplasmic Reticulum, Triads and Transverse Tubules

References
4.5 Mechanism of Inward Spread of Activation ... 113
4.5.1 Are the Transverse Tubules Open to the Surface? 114
4.5.2 Is the Spread of Activation into the T System
Active or Passive? ... 120
4.6 Ca\(^{2+}\) and Contractility: The Early Studies on Muscles 121
4.7 Ca\(^{2+}\) and Contractility: Observations on Model Systems 125
4.8 Discovery of the Ca\(^{2+}\) Receptor in Muscle Activation: Troponin ... 131
4.9 Mechanism of Relaxation: The Mysterious “Relaxing Factor” 135
4.10 The Ca\(^{2+}\) Transient: Contraction and Relaxation in Muscles 142
4.11 The Later Years: Setsuro Ebashi .. 147
References .. 148

5 Mechanics and Energetics of Muscular Contraction:
Before Sliding Filaments and into the Modern Era 155
5.1 Introduction ... 155
5.2 Mechanics of Muscular Contraction: The Classical Approach 157
5.2.1 The Visco-Elastic Model of Muscle Contraction 157
5.2.2 The Fenn Effect ... 158
5.2.3 Hill’s Two Component Model of Muscle Contraction 160
5.3 Mechanics of Muscular Contraction: The Contemporary
Approach 162
5.3.1 Velocity Transients ... 162
5.3.2 Tension Transients ... 163
5.3.3 Huxley-Simmons Model of Cross-Bridge Action 169
5.4 Energetics of Muscular Contraction ... 172
5.4.1 Archibald Vivian Hill: Scientist, Humanitarian,
Public Servant ... 172
5.4.2 Energetics of Muscular Contraction:
Establishing the Basic Framework ... 176
5.4.3 Chemistry of Muscular Contraction 179
5.4.4 Energy Balance Experiments and Unexplained Energy 181
5.4.5 Efficiency and Economy of Muscular Contraction.............. 192
5.4.6 Energy Liberation and ATP Cleavage During Stretch
of Active Muscle .. 195
5.5 Mechanism of Actomyosin ATPase:
Relationship to Cross-Bridge Cycle ... 198
References .. 204

6 1972 Cold Spring Harbor Symposia on Quantitative Biology:
The Mechanism of Muscle Contraction—Problem Solved?? 211
6.1 Introduction ... 211
6.2 Sequence, Subunits and Assembly of Muscle Proteins 213
6.2.1 Amino Acid Sequence of Actin ... 213
6.2.2 Myosin Light Chains: Structure and Function 213
6.2.3 C-protein (Myosin Binding Protein C, MyBP-C):
Discovery, Characterization and Localization 217
6.2.4 Structure and Assembly of Thick Filaments 222
6.2.5 Arrangement of Cross-bridges on the Thick Filament Surface ... 222
6.2.6 Packing of Myosin Molecules in a Thick Filament 225
6.2.7 Mechanism of Assembly of a Thick Filament 228
6.3 Muscle Regulatory Systems ... 231
 6.3.1 Troponin ... 231
 6.3.2 Parvalbumin: Structure of a Calcium Binding Protein 233
 6.3.3 Tropomyosin .. 236
6.4 Muscle Structure .. 239
 6.4.1 The Steric Blocking Model of Muscle Activation 239
 6.4.2 Demise of the Steric Blocking Model? 245
 6.4.3 Time Resolved X-ray Diffraction Evidence During Muscle Contraction Supports the Steric Blocking Model 248
 6.4.4 Dynamic Equilibrium: Three State Model of Actomyosin ATPase Activation ... 249
 6.4.5 Where is Tropomyosin on the Actin Filament? Is its Position Calcium and Cross-bridge Dependent?.............. 252
 6.4.6 Sarcoplasmic Reticulum, Transverse Tubules and Excitation-Contraction Coupling .. 256
 6.4.7 Calcium Pump of the Sarcoplasmic Reticulum 258
 6.4.8 Ryanodine Receptor: Calcium Release Channel of Sarcoplasmic Reticulum ... 261
 6.4.9 Dihydropyridine Receptor: Voltage Sensor and Calcium Channel in Transverse Tubules 264
6.5 Contractile Proteins in Non-Muscle Tissue 268
6.6 ATPase and Contraction: Energetics and Mechanical Properties 272
6.7 Muscle 1972: Progress and Problems .. 273
References .. 274

7 Endosarcomeric and Exosarcomeric Cytoskeleton: Emergence of Cell and Molecular Biology in the Muscle Field 285
 7.1 Introduction ... 285
 7.2 Passive Force and the Third Filament of the Sarcomere: Titin First Discovered as Connectin 286
 7.2.1 Introduction .. 286
 7.2.2 Early Electron Microscopic Evidence for a Third Filament and Its Skeptical Reception 287
 7.2.3 A Breakthrough: Protein Nature of a Putative Third Filament ... 289
 7.2.4 What’s in a Name: Connectin or Titin? 292
 7.2.5 First Comprehensive Model of Titin and Nebulin Location and Function .. 292
 7.2.6 Physiological Role of Titin in Muscle Fibers 294
 7.2.7 Sarcomeric Organization of Titin Molecules 297
 7.2.8 Elasticity of the Titin Molecule .. 299
 7.2.9 Titin and the Molecular Ruler Hypothesis 304
7.2.10 Number of Titin Molecules per Half Thick Filament and the Sarcomere Symmetry Paradox ... 304
7.2.11 Titin Isoforms and the Passive Mechanical Properties of Muscle ... 305
7.2.12 Beyond the “Classical” Functions of the Titin molecule: Titin as a Mechanosensor and Integrator of Myocyte Signaling Pathways .. 306
7.3 A Fourth Sarcomeric Filament: Nebulin, Structure and Function 307
 7.3.1 Nebulin as a Molecular Ruler .. 308
 7.3.2 Beyond the Molecular Ruler and/or Actin Stabilizer: Possible Roles of Nebulin in Muscle Contraction...................... 309
 7.3.3 Nebulin and Human Disease .. 310
7.4 Sarcomeric Organization: M Band and Z Disc Structure and Function 310
 7.4.1 M Band Structure ... 310
 7.4.2 Protein Content of the M Band ... 314
 7.4.3 Integrating M Band Proteins with M Band Structure: A Molecular Model ... 314
 7.4.4 Z Disc Structure .. 316
 7.4.5 Protein Content of the Z Disc .. 320
7.5 Intermediate Filaments: Desmin and the Exosarcomeric Cytoskeleton 322
References ... 327

8 Excitation-Contraction Coupling and Regulation of Contraction in Skeletal Muscle: The Modern Synthesis ... 333
 8.1 Introduction .. 333
 8.2 Molecular Basis of Excitation-Contraction Coupling 334
 8.2.1 Transverse Tubule-Sarcoplasmic Reticulum Communication .. 334
 8.2.2 Calcium Release Channel of Sarcoplasmic Reticulum: Structure, Function and Regulation 342
 8.2.3 The Calcium Transient ... 350
 8.3 Regulation of Contraction in Striated Muscle 354
 8.3.1 The Troponin Complex and Protein-Protein Interaction in Regulation of Contraction................................. 354
 8.3.2 Regulation of Muscle Force and Kinetics of Contraction by Calcium and Strongly Bound Cross-Bridges 363
 8.3.3 Myosin Light Chains and Muscle Function .. 371
 8.4 Molecular Mechanism of Skeletal Muscle Relaxation 374
 8.4.1 Introduction ... 374
 8.4.2 Tertiary Structures of the Sarcoplasmic Reticulum Calcium Pump and Mechanism of Calcium Transport 375
 8.4.3 Other Factors Influencing the Time Course of Skeletal Muscle Relaxation .. 383
 8.5 Conclusion ... 385
References ... 386
9 Molecular Mechanism of Force Production: From the Difficult 1980s to the Supercharged 1990s and Beyond

9.1 Introduction

9.2 Kinetics of Actomyosin ATPase in Muscle Fibers: Relationship to the Cross-Bridge Cycle

9.2.1 Generation of Caged ATP

9.2.2 Transient Kinetic Studies of Actomyosin ATPase in Muscle Fibers

9.3 Testing the Swinging-Tilting Cross-Bridge Model of Muscle Contraction: The Difficult Early 1980s

9.3.1 Probes of Cross-Bridge Movement: Structural Techniques Designed to Sense Cross-Bridge Movement During Muscle Contraction

9.3.2 A Fundamental Problem: Asynchronous Cross-Bridge Movement

9.3.3 A Refined Cross-Bridge Model: Some Innocence of the Original Model Was Lost

9.3.4 More Complications for the Sliding Filament Model

9.4 In Vitro Motility Assays: Myosin Generated Movement and Force Production In Vitro

9.4.1 Myosin Generated Movement In Vitro

9.4.2 Single Mechanoenzyme Mechanics: Laser Traps and Optical Tweezers

9.4.3 Single Myosin Molecule Mechanics: Measurement of Force and Step Size

9.5 Muscle Enters the Atomic Age: Atomic Structures of Actin and Myosin

9.5.1 Atomic Structure of Actin

9.5.2 Atomic Model of an Actin Filament

9.5.3 Atomic Structure of Myosin and the Actin-Myosin Complex: Introduction

9.5.4 Three-Dimensional Structure of Myosin Subfragment-1: A Molecular Motor

9.5.5 Structure of the Actin-Myosin Complex and Implications for Muscle Contraction

9.5.6 Structure of the Myosin Motor Domain in the Presence of Nucleotide Analogs: Post Rigor and Pre-powerstroke States

9.5.7 Swinging Lever Arm Hypothesis of Cross-Bridge Action: Integration of Structural Biology, Molecular Genetics and In Vitro Motility Assays

9.5.8 Nucleotide Free Myosin V as a Model of the Rigor State

9.5.9 What Causes the Lever Arm to Move? Communication Between the Nucleotide Binding Site, the Actin Binding Domain and the Lever Arm
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.6</td>
<td>Engineering the Myosin Motor Domain: Structure/Function Relationships</td>
<td>442</td>
</tr>
<tr>
<td>9.6.1</td>
<td>Structure/Function Studies of Myosin: Kinetic Tuning of Myosin via Surface Loops</td>
<td>443</td>
</tr>
<tr>
<td>9.7</td>
<td>Cross-Bridge Structural Changes During Contraction In Situ</td>
<td>447</td>
</tr>
<tr>
<td>9.7.1</td>
<td>Fluorescence Probes Re-visited</td>
<td>447</td>
</tr>
<tr>
<td>9.7.2</td>
<td>X-Ray Diffraction and Mechanical Studies of Cross-Bridge Conformation and Motion</td>
<td>451</td>
</tr>
<tr>
<td>9.7.3</td>
<td>Myosin Head Conformations During and After Rapid Changes in Muscle Length</td>
<td>452</td>
</tr>
<tr>
<td>9.7.4</td>
<td>X-Ray Interference and Axial Motions of Myosin Heads</td>
<td>454</td>
</tr>
<tr>
<td>9.8</td>
<td>Conclusion</td>
<td>459</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>459</td>
</tr>
</tbody>
</table>

Index | | 467 |
Mechanism of Muscular Contraction
Rall, J.A.
2014, XIII, 471 p. 179 illus., 34 illus. in color., Hardcover
ISBN: 978-1-4939-2006-8