Medical imaging is today an integrated part of the healthcare continuum, supporting early disease detection, diagnosis, therapy, monitoring, and follow-up. Images of the human body help in estimating the organ anatomy and function, reveal clues indicating the presence of disease, or help in guiding treatment and interventions. All these benefits are achieved by extracting and quantifying the medical image content, answering questions such as: “Which part of the 3D image represents the heart and what is the ejection fraction?”, “What is the volume of the liver”, “Which are the axillary lymph nodes with a diameter larger than 10 mm?”, “Is the artificial heart valve being positioned at the right location, with the right angulation?”

With the continuous increase in the spatial and temporal resolution, the informational content of images increases, contributing to new clinical benefits. While most of the content extraction, quantification, and decision making are guided and validated by the clinicians, computer-based image systems benefit from efficient algorithms and exponential increase in computational power. Thus, they play an important role in analyzing the image data, performing tasks such as identifying the anatomy or measuring a certain body function.

Systems based on machine learning have recently opened new ways to extract and interpret the informational content of medical images. Such systems learn from data through a process called training, thus developing the capability to identify, classify, and label the image content.

Learning systems have been initially applied to nonmedical images for two-dimensional (2D) object detection problems such as face detection, pedestrian or vehicle detection in 2D images, and video sequences. In these methods, object detection or localization is formulated as a classification problem: whether an image block contains the target object or not. The robustness of the methods comes from the exhaustive search with the trained classifier during object detection on an input image. The object pose parameter space is first quantized into a set of discrete hypotheses covering the entire space. Each hypothesis is tested by a trained classifier to get a detection score and the hypotheses with the highest score are taken as the detection output. In a typical setting, only three pose parameters are estimated, the
position \((X\text{ and } Y)\) and isotropic scale \((S)\), resulting in a three-dimensional search space and a search problem of relatively low complexity.

On the other hand, most of the medical imaging data used in clinical practice are volumetric and three-dimensional (3D). Computed tomography, C-Arm X-Ray, magnetic resonance, ultrasound, and nuclear imaging create 3D representations of the human body. To accurately localize a 3D object, one needs to estimate nine pose parameters: three for position, three for orientation, and three for anisotropic scaling. However, a straightforward extension of a 2D object detection method to 3D is not practically possible due to the exponential increase in the computation needs attributed to exhaustive search. How do we solve this problem? What kind of learning strategy would help to perform efficient search in a nine-dimensional pose parameter space?

This book presents a generic learning-based method for efficient 3D object detection called Marginal Space Learning (MSL). Instead of exhaustively searching the original nine-dimensional pose parameter space, only low-dimensional marginal spaces are searched in MSL to improve the detection speed.

We split the estimation into three steps: position estimation, position-orientation estimation, and position-orientation-scale estimation. First, we train a position estimator that can tell us if a position hypothesis is a good estimate of the target object position in an input volume. After exhaustively searching for the position marginal space (three-dimensional), we preserve a small number of position candidates with the largest detection scores. Next, we perform joint position-orientation estimation with a trained classifier that answers if a position-orientation hypothesis is a good estimate. The orientation marginal space is exhaustively searched for each position candidate preserved after position estimation. Similarly, we only preserve a limited number of position-orientation candidates after this step. Finally, the scale parameters are searched in the constrained space in a similar way.

Since after each step we only preserve a small number of candidates, a large portion of search space with low posterior probability is pruned efficiently in the early steps. Complexity analysis shows that MSL can reduce the number of testing hypotheses by six orders of magnitude, compared to the exhaustive full space search. Since the learning and detection are performed in a sequence of marginal spaces, we call the method Marginal Space Learning (MSL).

As it will be shown in this book, the MSL has been applied to detect multiple 2D/3D anatomical structures in the major medical imaging modalities. Several key techniques have later been proposed to further improve its detection speed and accuracy: Constrained MSL to exploit the strong correlation existing among pose parameters in the same marginal spaces; Iterated MSL to detect multiple instances of the same object type in a volume; Hierarchical MSL to improve the robustness by performing learning/detection on a volume pyramid; Joint spatio-temporal MSL to detect the trajectory of a landmark in a volume sequence.

With these improvements, we can reliably detect a 3D anatomical structure with a speed of 0.1–0.5 s/volume on an ordinary personal computer (3.2 GHz duo-core processor and 3 GB memory) without the use of special hardware such as graphics processing units.
The MSL can also be applied to generate accurate shape initialization for the segmentation of a nonrigid anatomical structure. To further improve the initialization accuracy, the MSL has been extended to directly estimate the nonrigid deformation parameters in combination with a learning-based boundary detector that guides the boundary evolution.

Several practical anatomy segmentation systems have been built and evaluated at multiple clinical sites. Examples include four-chamber heart segmentation, liver segmentation, and aorta segmentation. At the time of publication they all outperformed the state of the art in both speed and accuracy.

This book is for students, engineers, and researchers with interest in medical image analysis. It can also be used as a reference or supplementary material for related graduate courses. Preliminary knowledge of machine learning and medical imaging is needed to understand the content of the book.

Princeton, NJ, USA

Yefeng Zheng
Dorin Comaniciu
Marginal Space Learning for Medical Image Analysis
Efficient Detection and Segmentation of Anatomical Structures
Zheng, Y.; Comaniciu, D.
2014, XX, 268 p. 122 illus., 58 illus. in color., Hardcover
ISBN: 978-1-4939-0599-7