Part I Selective Catalytic Reduction Technology

1 Review of Selective Catalytic Reduction (SCR) and Related Technologies for Mobile Applications

Timothy V. Johnson

1.1 Introduction

1.2 Regulatory Overview

1.2.1 Heavy-Duty Truck Regulations

1.2.2 Light-Duty Regulations

1.3 Engine Developments

1.3.1 Heavy-Duty Engines

1.3.2 Light-Duty Diesel Engines

1.4 SCR Technologies

1.4.1 SCR System Introduction

1.4.2 Urea Delivery System

1.4.3 Alternative Sources for Ammonia and Systems

1.4.4 DOC Overview

1.4.5 SCR Catalysts

1.4.6 Ammonia Slip Catalysts

1.5 SCR System Design

1.6 Onboard Generation of Ammonia Using Lean NOx Traps

1.7 Outlook

1.8 Conclusions

References

2 SCR Technology for Off-highway (Large Diesel Engine) Applications

Daniel Chatterjee and Klaus Rusch

2.1 Introduction

2.2 Off-highway Emission Legislation
2.3 SCR Systems for High-Speed Engines .. 38
 2.3.1 Small Ship Applications .. 39
 2.3.2 Rail Applications .. 39
 2.3.3 Gensets ... 40
2.4 Medium and Low-Speed Engines .. 42
 2.4.1 Fuels and Sulfur ... 42
 2.4.2 SCR Technology for Marine Applications 45
 2.4.3 Low-Speed Engine Genset ... 45
2.5 Combined Systems ... 47
 2.5.1 DPF + SCR ... 47
 2.5.2 Combination of DeNoxation and DeSulfurization 51
2.6 System Integration ... 51
 2.6.1 Reductant Supply .. 51
 2.6.2 Canning Concepts .. 55
2.7 Control Strategies ... 56
2.8 Outlook ... 58
References .. 59

Part II Catalysts

3 Vanadia-Based Catalysts for Mobile SCR 65
 Jonas Jansson
 3.1 Introduction ... 65
 3.2 Legislation .. 66
 3.3 Main SCR Reactions .. 67
 3.4 Urea Injection .. 68
 3.5 Properties of Vanadia SCR Catalyst 68
 3.6 Reaction Mechanism ... 71
 3.7 Function/Principle Design ... 73
 3.8 Dimensioning of SCR System ... 76
 3.9 Effect of NO₂ ... 81
 3.10 Aging of Vanadia SCR Catalysts ... 83
 3.10.1 Thermal Aging .. 83
 3.10.2 Impact of Sulfur ... 85
 3.10.3 Alkali Metals and Alkaline Earth Metals 87
 3.10.4 Oil Poisons .. 88
 3.10.5 Hydrocarbons ... 90
 3.10.6 Arsenic and Lead .. 91
 3.10.7 Biofuel ... 91
 3.10.8 In-use Aging Evaluation ... 92
 3.11 Summary and Conclusions .. 92
References .. 93
4 Fe-Zeolite Functionality, Durability, and Deactivation Mechanisms in the Selective Catalytic Reduction (SCR) of NO\textsubscript{x} with Ammonia

Todd J. Toops, Josh A. Pihl and William P. Partridge

4.1 Introduction .. 97
4.2 Experimental Considerations in Evaluating and Aging Catalysts .. 99
4.3 Fe-Zeolite NO\textsubscript{x} Reduction Characteristics ... 104
4.4 Durability, Aging Techniques, and Deactivation Mechanism Affecting Performance 111
4.5 Summary ... 118
References .. 119

5 Cu/Zeolite SCR Catalysts for Automotive Diesel NO\textsubscript{x} Emission Control

Hai-Ying Chen

5.1 Introduction .. 123
5.2 Chemistry and Functionality of Cu/Zeolite SCR Catalysts .. 124
5.3 Deactivation Mechanisms of Cu/Zeolite SCR Catalysts .. 126
 5.3.1 Hydrothermal Deactivation ... 126
 5.3.2 Hydrocarbon Storage, Inhibition, and Poisoning .. 132
 5.3.3 Sulfur Poisoning ... 133
 5.3.4 Urea and Urea Deposit Related Catalyst Deactivation .. 133
 5.3.5 Chemical Poisoning .. 134
5.4 Development of Small-Pore Zeolite Supported Cu SCR Catalysts .. 135
5.5 Investigation on the Superior Hydrothermal Stability of Small-Pore Zeolite Supported Cu SCR Catalyst .. 140
5.6 Investigation on the Active Cu Sites in Small-Pore Zeolite Supported Cu SCR Catalysts 142
5.7 Summary ... 143
References .. 144

6 Low-Temperature Selective Catalytic Reduction (SCR) of NO\textsubscript{x} with NH\textsubscript{3} Over Zeolites and Metal Oxide-Based Catalysts and Recent Developments of H\textsubscript{2}-SCR

Gongshin Qi, Lifeng Wang and Ralph T. Yang

6.1 Ammonia-SCR ... 149
 6.1.1 Introduction ... 149
 6.1.2 Catalysts and Mechanistic Aspects of the Low-Temperature Ammonia-SCR 151
6.2 H₂-SCR ... 163
 6.2.1 Introduction 163
 6.2.2 Catalysts and Mechanistic Aspects of H₂-SCR 165
6.3 Challenges and Prospective 171
References ... 172

Part III Mechanistic Aspects

7 Active Sites for Selective Catalytic Reduction 181
Wolfgang Grünert
 7.1 Introduction 181
 7.2 Strategies and Methods for the Identification of Active Sites ... 182
 7.3 Supported Vanadia Catalysts 193
 7.4 Zeolite-Based Catalysts 198
 7.4.1 Fe Zeolites 198
 7.4.2 Cu Zeolites 206
 7.5 Recent Catalyst Development 208
 7.6 Concluding Remarks 210
References ... 211

8 Mechanistic Aspect of NO–NH₃–O₂ Reacting System 221
Masaoki Iwasaki
 8.1 Introduction 221
 8.2 Steady-State Reaction Analysis 221
 8.2.1 NH₃/NO/O₂, NH₃/O₂, and NO/O₂ Reactions 221
 8.2.2 Apparent Activation Energy 223
 8.2.3 Apparent Reaction Orders 224
 8.2.4 Relationship with NO Oxidation Activity 227
 8.2.5 Effect of Coexisting Gases and Poisoning 230
 8.3 Transient Reaction Analysis 233
 8.3.1 Periodic NH₃ Supply 233
 8.3.2 NO Pulse Reaction 237
 8.3.3 In Situ FT-IR Analysis 238
 8.4 Reaction Mechanisms 240
 8.4.1 Vanadium-Based Catalysts 240
 8.4.2 Fe- or Cu-Exchanged Zeolite Catalysts 242
 8.5 Conclusions 244
References ... 244

9 The Role of NO₂ in the NH₃–SCR Catalytic Chemistry 247
Enrico Tronconi and Isabella Nova
 9.1 Introduction 247
 9.2 Experimental 248
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.3</td>
<td>Surface Storage of NOx</td>
<td>249</td>
</tr>
<tr>
<td>9.3.1</td>
<td>NO₂ Adsorption/Desorption</td>
<td>249</td>
</tr>
<tr>
<td>9.3.2</td>
<td>FTIR in Situ Study of NO₂ Adsorption</td>
<td>250</td>
</tr>
<tr>
<td>9.3.3</td>
<td>Effect of the Catalyst Redox State on NO₂ Adsorption</td>
<td>251</td>
</tr>
<tr>
<td>9.4</td>
<td>The Role of Surface Nitrates in the Fast SCR Mechanism</td>
<td>253</td>
</tr>
<tr>
<td>9.4.1</td>
<td>NH₃ + NOₓ Temperature Programmed Reaction (TPR) Runs</td>
<td>253</td>
</tr>
<tr>
<td>9.4.2</td>
<td>Role of Nitrates in the NO/NO₂–NH₃ SCR Mechanism</td>
<td>255</td>
</tr>
<tr>
<td>9.5</td>
<td>Mechanistic Studies by Transient Response Methods</td>
<td>255</td>
</tr>
<tr>
<td>9.5.1</td>
<td>Reactivity of Surface Nitrates with NO and with NH₃</td>
<td>256</td>
</tr>
<tr>
<td>9.5.2</td>
<td>The Role of Nitrites</td>
<td>257</td>
</tr>
<tr>
<td>9.5.3</td>
<td>Overall Mechanistic Scheme</td>
<td>258</td>
</tr>
<tr>
<td>9.5.4</td>
<td>Ammonia Blocking of Nitrates Reduction</td>
<td>259</td>
</tr>
<tr>
<td>9.5.5</td>
<td>Considerations on the Red-ox Nature of the NH₃–SCR Mechanisms</td>
<td>260</td>
</tr>
<tr>
<td>9.5.6</td>
<td>Higher Temperatures: The NO₂–SCR Reaction</td>
<td>261</td>
</tr>
<tr>
<td>9.5.7</td>
<td>Selectivity Issues: The Formation of NH₄NO₃, N₂O</td>
<td>262</td>
</tr>
<tr>
<td>9.6</td>
<td>Feeding Nitrates: The Enhanced SCR Reaction</td>
<td>263</td>
</tr>
<tr>
<td>9.6.1</td>
<td>The Boosting Action of Ammonium Nitrate</td>
<td>263</td>
</tr>
<tr>
<td>9.6.2</td>
<td>Analysis of the Enhanced SCR Chemistry</td>
<td>267</td>
</tr>
<tr>
<td>9.7</td>
<td>Summary and Conclusions</td>
<td>268</td>
</tr>
<tr>
<td>References</td>
<td>269</td>
<td></td>
</tr>
</tbody>
</table>

Part IV Reaction Kinetics

10 Kinetics of NH₃-SCR Reactions Over V₂O₅–WO₃/TiO₂ Catalyst | 273 |
Isabella Nova and Enrico Tronconi

10.1 Introduction | 273 |
10.2 Methods | 274 |
10.2.1 Experimental Rig and Procedures | 274 |
10.2.2 Mathematical Model of the Microreactor for Kinetic Tests | 275 |
10.3 NH₃/O₂ Reacting System | 276 |
10.4 NH₃–NO/O₂ Reacting System | 282 |
10.5 NH₃–NO/NO₂ Reacting System | 294 |
10.6 Conclusions | 308 |
References | 308 |
11 Lean NOx Reduction by NH3 on Fe-Exchanged Zeolite and Layered Fe/Cu Zeolite Catalysts: Mechanisms, Kinetics, and Transport Effects
Michael P. Harold and Pranit Metkar

11.1 Introduction .. 311
11.2 Reaction System Performance Features 312
 11.2.1 NO Oxidation and NO2 Decomposition 315
 11.2.2 NH3 Oxidation .. 316
 11.2.3 Selective Catalytic Reduction of NOx 317
11.3 Kinetics and Mechanistic Considerations 324
 11.3.1 NO Oxidation .. 325
 11.3.2 Standard SCR Reaction 331
 11.3.3 Ammonia Inhibition 333
 11.3.4 Selective Catalytic Reaction with NO and NO2 334
11.4 Reaction and Transport Interactions 343
11.5 Reactor Modeling Developments 348
11.6 Concluding Remarks .. 353
References ... 354

12 Kinetic Modeling of Ammonia SCR for Cu-Zeolite Catalysts 357
Louise Olsson

12.1 Introduction .. 357
12.2 Kinetic Models for Ammonia and Water Storage Over Cu-Zeolites 358
 12.2.1 Global Kinetic Model for Ammonia Storage and Desorption 361
 12.2.2 Detailed Kinetic Model for Ammonia and Water Storage 362
12.3 Kinetic Models for Ammonia Oxidation Over Cu-Zeolites 364
 12.3.1 Global Kinetic Model for Ammonia Oxidation 364
 12.3.2 Detailed Kinetic Model for Ammonia Oxidation 364
12.4 Kinetic Models for NOx Storage and NO Oxidation Over Cu-Zeolites 365
 12.4.1 Detailed Kinetic Model for NO Oxidation 365
 12.4.2 Global Kinetic Model for NO Oxidation 369
12.5 Kinetic Models for SCR Reactions Over Cu-Zeolites 371
 12.5.1 Global Kinetic Models for SCR Over Cu-Zeolites 371
 12.5.2 Detailed Kinetic Models for SCR Over Cu-Zeolites 376
12.6 Conclusions .. 381
References ... 381
Part V Modeling and Control

13 SCR Reactor Models for Flow-Through and Wall-Flow Converters
Dimitrios Karamitros and Grigorios Koltsakis

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.1</td>
<td>Introduction</td>
<td>385</td>
</tr>
<tr>
<td>13.2</td>
<td>Fundamentals of Flow-Through Catalyst Modeling</td>
<td>386</td>
</tr>
<tr>
<td>13.2.1</td>
<td>Balance Equations</td>
<td>387</td>
</tr>
<tr>
<td>13.2.2</td>
<td>Washcoat Internal Diffusion Modeling</td>
<td>389</td>
</tr>
<tr>
<td>13.2.3</td>
<td>Multidimensional Model Extension</td>
<td>391</td>
</tr>
<tr>
<td>13.3</td>
<td>Reaction Modeling</td>
<td>392</td>
</tr>
<tr>
<td>13.3.1</td>
<td>Adsorption Model</td>
<td>392</td>
</tr>
<tr>
<td>13.3.2</td>
<td>de-NO\textsubscript{x} Reactions</td>
<td>394</td>
</tr>
<tr>
<td>13.3.3</td>
<td>Parameter Calibration</td>
<td>397</td>
</tr>
<tr>
<td>13.4</td>
<td>Importance of Washcoat Diffusion Modeling</td>
<td>397</td>
</tr>
<tr>
<td>13.4.1</td>
<td>Experimental Results</td>
<td>398</td>
</tr>
<tr>
<td>13.4.2</td>
<td>Simulation Study and Effective Diffusivity Investigation</td>
<td>398</td>
</tr>
<tr>
<td>13.5</td>
<td>From Lab Reactor Tests to Real-World System Modeling</td>
<td>400</td>
</tr>
<tr>
<td>13.5.1</td>
<td>Overview of Model Parameterization Approaches</td>
<td>400</td>
</tr>
<tr>
<td>13.5.2</td>
<td>Microreactor and Monolith Reactor Tests</td>
<td>400</td>
</tr>
<tr>
<td>13.5.3</td>
<td>Real-World Full-Scale Applications</td>
<td>402</td>
</tr>
<tr>
<td>13.6</td>
<td>Fundamentals of SCR on DPF Modeling</td>
<td>403</td>
</tr>
<tr>
<td>13.6.1</td>
<td>Wall-Flow Filter Model</td>
<td>403</td>
</tr>
<tr>
<td>13.6.2</td>
<td>SCR Kinetic Model and Soot Oxidation Kinetics</td>
<td>406</td>
</tr>
<tr>
<td>13.6.3</td>
<td>Wall-Flow Versus Flow-Through Monoliths</td>
<td>407</td>
</tr>
<tr>
<td>13.6.4</td>
<td>Interactions Between Soot and de-NO\textsubscript{x} Activity</td>
<td>408</td>
</tr>
<tr>
<td>13.7</td>
<td>Integrated Exhaust System Modeling</td>
<td>412</td>
</tr>
<tr>
<td>13.7.1</td>
<td>Model-Based DPF + SCR System Optimization</td>
<td>413</td>
</tr>
<tr>
<td>13.7.2</td>
<td>Combined LNT-SCR Concepts</td>
<td>416</td>
</tr>
<tr>
<td>13.7.3</td>
<td>Combined SCR-ASC Concept</td>
<td>418</td>
</tr>
<tr>
<td>13.8</td>
<td>Conclusion: Perspectives</td>
<td>419</td>
</tr>
</tbody>
</table>

References | 422

14 Diesel Engine SCR Systems: Modeling, Measurements, and Control
Ming-Feng Hsieh and Junmin Wang

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.1</td>
<td>Introduction</td>
<td>425</td>
</tr>
<tr>
<td>14.2</td>
<td>SCR Control-Oriented Modeling</td>
<td>426</td>
</tr>
<tr>
<td>14.2.1</td>
<td>Introduction</td>
<td>426</td>
</tr>
<tr>
<td>14.2.2</td>
<td>Main SCR Reactions</td>
<td>426</td>
</tr>
<tr>
<td>14.2.3</td>
<td>Control-Oriented SCR Model</td>
<td>427</td>
</tr>
<tr>
<td>14.3</td>
<td>SCR Sensing and Estimation Systems</td>
<td>430</td>
</tr>
<tr>
<td>14.3.1</td>
<td>NO\textsubscript{x} Sensor NH\textsubscript{3} Cross-Sensitivity</td>
<td>431</td>
</tr>
</tbody>
</table>
14.3.2 SCR Catalyst Ammonia Coverage Ratio Estimation .. 437
14.4 SCR Control ... 441
 14.4.1 Control-Oriented SCR Model 442
 14.4.2 Controller Design and Architecture 443
 14.4.3 Experimental Setup 444
 14.4.4 Experimental Results of US06 Test Cycle 446
14.5 Conclusions .. 448
References ... 449

Part VI Ammonia Supply

15 DEF Systems and Aftertreatment Architecture Considerations 455
 Ryan Floyd, Levin Michael and Zafar Shaikh
 15.1 Role of Engine and Dosing Calibration 459
 15.2 Overview of Injection Technology and Spray Quality 461
 15.3 Overview of SCR System Mixing Devices 467
 15.4 SCR System Mixing Devices: Ford Practical Example 471
 15.5 Aftertreatment Architecture 474
 15.6 Deposit Mitigation: Practical Example 479
 15.7 Concluding Remarks......................... 483
References ... 483

16 Ammonia Storage and Release in SCR Systems for Mobile Applications ... 485
 Daniel Peitz, Andreas Bernhard and Oliver Kröcher
 16.1 Introduction .. 485
 16.2 Urea as Ammonia Precursor Compound 486
 16.2.1 Solid Urea .. 486
 16.2.2 Urea Solution ... 487
 16.2.3 Urea Thermolysis and Evaporation 487
 16.2.4 Urea Decomposition Byproducts and Catalyst Deactivation 489
 16.2.5 Catalytic Urea Decomposition 491
 16.3 Alternative Ammonia Precursor Compounds 493
 16.3.1 Cyanuric Acid ... 493
 16.3.2 Ammonium Formate 494
 16.3.3 Ammonium Carbamate 495
 16.3.4 Metal Ammine Chlorides 496
 16.3.5 Methanamide .. 498
 16.3.6 Guanidinium Salts 499
 16.3.7 Catalytic Decomposition of Alternative NH₃ Precursor Compounds 499
References ... 501
17 Modeling the Gas Flow Process Inside Exhaust Systems:
One Dimensional and Multidimensional Approaches 507
Gianluca Montenegro and Angelo Onorati
17.1 Introduction ... 507
17.2 1D Models for the Prediction of Gas Flows 508
17.2.1 Modeling the Thermal Aspects 510
17.2.2 Thermal and Hydrolytic Decomposition of Urea 516
17.2.3 Kinetic Model .. 517
17.3 Multidimensional Models ... 521
17.3.1 Governing Equations .. 521
17.3.2 Modeling the UWS Injection 526
17.3.3 Modeling the Formation of Liquid Film 532
17.3.4 Discretization of Source Terms and Equations .. 535
17.3.5 Examples of CFD Application 538
References .. 547

Part VII Integrated Systems

18 Dual-Layer Ammonia Slip Catalysts for Automotive SCR
Exhaust Gas Aftertreatment: An Experimental
and Modeling Study .. 553
Isabella Nova, Massimo Colombo, Enrico Tronconi,
Volker Schmeißer, Brigitte Bandl-Konrad and Lisa Zimmermann
18.1 Introduction ... 554
18.2 Methods .. 556
18.2.1 Experimental .. 557
18.2.2 Modeling ... 558
18.3 Derivation and Validation of the SCR Model 561
18.3.1 Reaction Network and Kinetic Scheme
Over the SCR Component .. 561
18.3.2 Kinetic Fit .. 566
18.3.3 Model Validation .. 567
18.4 Derivation and Validation of the PGM Catalyst Model .. 567
18.4.1 Reaction Network and Kinetic Scheme
Over the PGM Component 567
18.4.2 Model Fit ... 573
18.4.3 Model Validation .. 573
18.5 Analysis and Modeling of SCR/PGM Interactions 575
18.5.1 Experimental Study of SCR/PGM Interactions 575
18.5.2 Predictive Simulations of the SCR/PGM
Combined Systems ... 577
18.6 Modeling of Dual-Layer Monolith ASC

18.6.1 Development of a Dual-Layer Monolith Model

18.6.2 Validation of the Dual-Layer Monolith ASC Model

18.7 Conclusions

References

19 NSR–SCR Combined Systems: Production and Use of Ammonia

Fabien Can, Xavier Courtois and Daniel Duprez

19.1 Introduction

19.2 NH₃ Emission from NSR Catalysts

19.2.1 The NSR Process

19.2.2 Ammonia Formation Pathways

19.2.3 Influencing Parameters/Ammonia Reactivity

19.2.4 Conclusion

19.3 Coupling of NOx Trap and NH₃–SCR Catalysts

19.3.1 Emergence and Development of the NSR–SCR Coupling Concept

19.3.2 Coupling of Pt Catalysts with Zeolites

19.3.3 Coupling of Pt(RhPd)/BaO/Al₂O₃ with Cu–Zeolite Catalysts

19.3.4 Coupling of Pt(RhPd)/BaO/Al₂O₃ with Fe–Zeolite Catalysts

19.3.5 Other Systems Including Tungsten-Based Catalysts

19.4 Selective Catalytic Reduction of NOx by Ammonia (NH₃–SCR)

19.4.1 Mechanistic Aspects of the SCR Reaction

19.4.2 Effect of Zeolite Framework

19.4.3 Role of Acidic Sites

19.4.4 Active Sites and Performances of Cu–Zeolite, Fe–Zeolite, and Other Systems in NH₃–SCR

19.5 Conclusion and Perspective

References

20 Integration of SCR Functionality into Diesel Particulate Filters

Thorsten Boger

20.1 Introduction

20.2 Diesel Particulate Filter Technologies

20.2.1 Diesel Particulate Filter Designs and Materials

20.2.2 Catalyst Coatings for Diesel Particulate Filters
20.3 Performance Considerations for SCR Integrated Diesel Particulate Filters

- 20.3.1 Pressure Drop and Permeability
- 20.3.2 Filtration
- 20.3.3 Filter Regeneration, Thermal Management, and Durability
- 20.3.4 DeNOx Efficiency

20.4 Modeling of SCR Integrated Particulate Filters

20.5 Application Examples

- 20.5.1 Light Duty
- 20.5.2 Heavy Duty

20.6 Summary

References

Part VIII Case Histories

21 Development of the 2010 Ford Diesel Truck Catalyst System

Christine Lambert and Giovanni Cavataio

- 21.1 Introduction
- 21.2 Early Research at Ford on Lean NOx Control for Diesel Vehicles
- 21.3 Ford’s Research Program on a Prototype Light-Duty Diesel Truck
 - 21.3.1 SCR System Design
 - 21.3.2 DOC Development for SCR Systems
 - 21.3.3 SCR Catalyst Formulations
 - 21.3.4 Vehicle System Results
- 21.4 Migration of Research into a Production Vehicle Program
 - 21.4.1 Vehicle Program Needs for Lean NOx Control
 - 21.4.2 Catalyst and System Design Options
- 21.5 Development Challenges Associated with SCR Catalyst Systems
 - 21.5.1 Thermal Stability of the DOC
 - 21.5.2 Thermal Stability of the SCR Catalyst
 - 21.5.3 Ammonia Storage Management
 - 21.5.4 HC Poisoning/Coking of Zeolitic SCR Catalysts
 - 21.5.5 Precious Metal Poisoning
 - 21.5.6 Sulfur Effects on Catalysts
 - 21.5.7 Urea Injection/Mixing
 - 21.5.8 Urea Specifications and Refill

References
21.6 Environmental Impact of Medium-Duty Diesels:
 Current and Future ... 683
 21.6.1 NOx Emissions ... 683
 21.6.2 Greenhouse Gas Footprint (CO₂, CH₄, N₂O) 684
 21.6.3 Use of Base Metals, Pd Rich Catalysts 684
21.7 Conclusion ... 686
References .. 687

22 Model-Based Approaches to Exhaust Aftertreatment
System Development ... 691
Michel Weibel, Volker Schmeißer and Frank Hofmann
22.1 Introduction .. 692
22.2 Modeling of the Exhaust Gas Aftertreatment System 693
 22.2.1 Total System Simulation 693
 22.2.2 Model Structure .. 694
 22.2.3 Kinetics and Parameterization 695
22.3 Simulation Methods in the Development Process 696
 22.3.1 Demands of the Development Process 696
 22.3.2 The Virtual Testbench Concept 697
 22.3.3 Development of an AdBlue® Dosing
 Control Strategy ... 697
22.4 Outlook: On-board Model-Based SCR Control 704
22.5 Summary .. 705
References .. 706

About the Editors .. 709

Index ... 711
Urea-SCR Technology for deNOx After Treatment of Diesel Exhausts
Nova, I.; Tronconi, E. (Eds.)
2014, XX, 716 p. 411 illus., 292 illus. in color., Hardcover
ISBN: 978-1-4899-8070-0