<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.3</td>
<td>SCR Systems for High-Speed Engines</td>
<td>38</td>
</tr>
<tr>
<td>2.3.1</td>
<td>Small Ship Applications</td>
<td>39</td>
</tr>
<tr>
<td>2.3.2</td>
<td>Rail Applications</td>
<td>39</td>
</tr>
<tr>
<td>2.3.3</td>
<td>Gensets</td>
<td>40</td>
</tr>
<tr>
<td>2.4</td>
<td>Medium and Low-Speed Engines</td>
<td>42</td>
</tr>
<tr>
<td>2.4.1</td>
<td>Fuels and Sulfur</td>
<td>42</td>
</tr>
<tr>
<td>2.4.2</td>
<td>SCR Technology for Marine Applications</td>
<td>45</td>
</tr>
<tr>
<td>2.4.3</td>
<td>Low-Speed Engine Genset</td>
<td>45</td>
</tr>
<tr>
<td>2.5</td>
<td>Combined Systems</td>
<td>47</td>
</tr>
<tr>
<td>2.5.1</td>
<td>DPF + SCR</td>
<td>47</td>
</tr>
<tr>
<td>2.5.2</td>
<td>Combination of DeNoxation and DeSulfurization</td>
<td>51</td>
</tr>
<tr>
<td>2.6</td>
<td>System Integration</td>
<td>51</td>
</tr>
<tr>
<td>2.6.1</td>
<td>Reductant Supply</td>
<td>51</td>
</tr>
<tr>
<td>2.6.2</td>
<td>Canning Concepts</td>
<td>55</td>
</tr>
<tr>
<td>2.7</td>
<td>Control Strategies</td>
<td>56</td>
</tr>
<tr>
<td>2.8</td>
<td>Outlook</td>
<td>58</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>59</td>
</tr>
</tbody>
</table>

Part II Catalysts

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Vanadia-Based Catalysts for Mobile SCR</td>
<td>65</td>
</tr>
<tr>
<td></td>
<td>Jonas Jansson</td>
<td></td>
</tr>
<tr>
<td>3.1</td>
<td>Introduction</td>
<td>65</td>
</tr>
<tr>
<td>3.2</td>
<td>Legislation</td>
<td>66</td>
</tr>
<tr>
<td>3.3</td>
<td>Main SCR Reactions</td>
<td>67</td>
</tr>
<tr>
<td>3.4</td>
<td>Urea Injection</td>
<td>68</td>
</tr>
<tr>
<td>3.5</td>
<td>Properties of Vanadia SCR Catalyst</td>
<td>68</td>
</tr>
<tr>
<td>3.6</td>
<td>Reaction Mechanism</td>
<td>71</td>
</tr>
<tr>
<td>3.7</td>
<td>Function/Principle Design</td>
<td>73</td>
</tr>
<tr>
<td>3.8</td>
<td>Dimensioning of SCR System</td>
<td>76</td>
</tr>
<tr>
<td>3.9</td>
<td>Effect of NO₂</td>
<td>81</td>
</tr>
<tr>
<td>3.10</td>
<td>Aging of Vanadia SCR Catalyst</td>
<td>83</td>
</tr>
<tr>
<td>3.10.1</td>
<td>Thermal Aging</td>
<td>83</td>
</tr>
<tr>
<td>3.10.2</td>
<td>Impact of Sulfur</td>
<td>85</td>
</tr>
<tr>
<td>3.10.3</td>
<td>Alkali Metals and Alkaline Earth Metals</td>
<td>87</td>
</tr>
<tr>
<td>3.10.4</td>
<td>Oil Poisons</td>
<td>88</td>
</tr>
<tr>
<td>3.10.5</td>
<td>Hydrocarbons</td>
<td>90</td>
</tr>
<tr>
<td>3.10.6</td>
<td>Arsenic and Lead</td>
<td>91</td>
</tr>
<tr>
<td>3.10.7</td>
<td>Biofuel</td>
<td>91</td>
</tr>
<tr>
<td>3.10.8</td>
<td>In-use Aging Evaluation</td>
<td>92</td>
</tr>
<tr>
<td>3.11</td>
<td>Summary and Conclusions</td>
<td>92</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>93</td>
</tr>
</tbody>
</table>
4 Fe-Zeolite Functionality, Durability, and Deactivation
Mechanisms in the Selective Catalytic Reduction (SCR)
of NO\textsubscript{x} with Ammonia .. 97
Todd J. Toops, Josh A. Pihl and William P. Partridge
4.1 Introduction .. 97
4.2 Experimental Considerations in Evaluating
and Aging Catalysts .. 99
4.3 Fe-Zeolite NO\textsubscript{x} Reduction Characteristics 104
4.4 Durability, Aging Techniques, and Deactivation Mechanism
Affecting Performance ... 111
4.5 Summary .. 118
References ... 119

5 Cu/Zeolite SCR Catalysts for Automotive Diesel NO\textsubscript{x}
Emission Control ... 123
Hai-Ying Chen
5.1 Introduction .. 123
5.2 Chemistry and Functionality of Cu/Zeolite SCR Catalysts . 124
5.3 Deactivation Mechanisms of Cu/Zeolite SCR Catalysts 126
 5.3.1 Hydrothermal Deactivation 126
 5.3.2 Hydrocarbon Storage, Inhibition, and Poisoning 132
 5.3.3 Sulfur Poisoning ... 133
 5.3.4 Urea and Urea Deposit Related Catalyst
 Deactivation .. 133
 5.3.5 Chemical Poisoning 134
5.4 Development of Small-Pore Zeolite Supported
Cu SCR Catalysts ... 135
5.5 Investigation on the Superior Hydrothermal Stability
of Small-Pore Zeolite Supported Cu SCR Catalyst 140
5.6 Investigation on the Active Cu Sites in Small-Pore
Zeolite Supported Cu SCR Catalysts 142
5.7 Summary .. 143
References ... 144

6 Low-Temperature Selective Catalytic Reduction (SCR) of NO\textsubscript{x}
with NH\textsubscript{3} Over Zeolites and Metal Oxide-Based Catalysts
and Recent Developments of H\textsubscript{2}-SCR 149
Gongshin Qi, Lifeng Wang and Ralph T. Yang
6.1 Ammonia-SCR .. 149
 6.1.1 Introduction .. 149
 6.1.2 Catalysts and Mechanistic Aspects
 of the Low-Temperature Ammonia-SCR 151
<table>
<thead>
<tr>
<th>Part III Mechanistic Aspects</th>
</tr>
</thead>
<tbody>
<tr>
<td>7 Active Sites for Selective Catalytic Reduction</td>
</tr>
<tr>
<td>Wolfgang Grünert</td>
</tr>
<tr>
<td>7.1 Introduction</td>
</tr>
<tr>
<td>7.2 Strategies and Methods for the Identification of Active Sites</td>
</tr>
<tr>
<td>7.3 Supported Vanadia Catalysts</td>
</tr>
<tr>
<td>7.4 Zeolite-Based Catalysts</td>
</tr>
<tr>
<td>7.4.1 Fe Zeolites</td>
</tr>
<tr>
<td>7.4.2 Cu Zeolites</td>
</tr>
<tr>
<td>7.5 Recent Catalyst Development</td>
</tr>
<tr>
<td>7.6 Concluding Remarks</td>
</tr>
<tr>
<td>References</td>
</tr>
</tbody>
</table>

| 8 Mechanistic Aspect of NO–NH₃–O₂ Reacting System | 221 |
| Masaoki Iwasaki |
8.1 Introduction	221
8.2 Steady-State Reaction Analysis	221
8.2.1 NH₃/NO/O₂, NH₃/O₂, and NO/O₂ Reactions	221
8.2.2 Apparent Activation Energy	223
8.2.3 Apparent Reaction Orders	224
8.2.4 Relationship with NO Oxidation Activity	227
8.2.5 Effect of Coexisting Gases and Poisoning	230
8.3 Transient Reaction Analysis	233
8.3.1 Periodic NH₃ Supply	233
8.3.2 NO Pulse Reaction	237
8.3.3 In Situ FT-IR Analysis	238
8.4 Reaction Mechanisms	240
8.4.1 Vanadium-Based Catalysts	240
8.4.2 Fe- or Cu-Exchanged Zeolite Catalysts	242
8.5 Conclusions	244
References	244

<p>| 9 The Role of NO₂ in the NH₃–SCR Catalytic Chemistry | 247 |
| Enrico Tronconi and Isabella Nova |
| 9.1 Introduction | 247 |
| 9.2 Experimental | 248 |</p>
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.3 Surface Storage of NOx</td>
<td>249</td>
</tr>
<tr>
<td>9.3.1 NO2 Adsorption/Desorption</td>
<td>249</td>
</tr>
<tr>
<td>9.3.2 FTIR in Situ Study of NO2 Adsorption</td>
<td>250</td>
</tr>
<tr>
<td>9.3.3 Effect of the Catalyst Redox State on NO2 Adsorption</td>
<td>251</td>
</tr>
<tr>
<td>9.4 The Role of Surface Nitrates in the Fast SCR Mechanism</td>
<td>253</td>
</tr>
<tr>
<td>9.4.1 NH3 + NOx Temperature Programmed Reaction (TPR) Runs</td>
<td>253</td>
</tr>
<tr>
<td>9.4.2 Role of Nitrates in the NO/NO2–NH3 SCR Mechanism</td>
<td>255</td>
</tr>
<tr>
<td>9.5 Mechanistic Studies by Transient Response Methods</td>
<td>255</td>
</tr>
<tr>
<td>9.5.1 Reactivity of Surface Nitrates with NO and with NH3</td>
<td>256</td>
</tr>
<tr>
<td>9.5.2 The Role of Nitrites</td>
<td>257</td>
</tr>
<tr>
<td>9.5.3 Overall Mechanistic Scheme</td>
<td>258</td>
</tr>
<tr>
<td>9.5.4 Ammonia Blocking of Nitrates Reduction</td>
<td>259</td>
</tr>
<tr>
<td>9.5.5 Considerations on the Red-ox Nature of the NH3–SCR Mechanisms</td>
<td>260</td>
</tr>
<tr>
<td>9.5.6 Higher Temperatures: The NO2–SCR Reaction</td>
<td>261</td>
</tr>
<tr>
<td>9.5.7 Selectivity Issues: The Formation of NH4NO3, N2O</td>
<td>262</td>
</tr>
<tr>
<td>9.6 Feeding Nitrates: The Enhanced SCR Reaction</td>
<td>263</td>
</tr>
<tr>
<td>9.6.1 The Boosting Action of Ammonium Nitrate</td>
<td>263</td>
</tr>
<tr>
<td>9.6.2 Analysis of the Enhanced SCR Chemistry</td>
<td>267</td>
</tr>
<tr>
<td>9.7 Summary and Conclusions</td>
<td>268</td>
</tr>
<tr>
<td>References</td>
<td>269</td>
</tr>
</tbody>
</table>

Part IV Reaction Kinetics

10 Kinetics of NH3-SCR Reactions Over

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>V2O5–WO3/TiO2 Catalyst</td>
<td>273</td>
</tr>
<tr>
<td>Isabella Nova and Enrico Tronconi</td>
<td></td>
</tr>
<tr>
<td>10.1 Introduction</td>
<td>273</td>
</tr>
<tr>
<td>10.2 Methods</td>
<td>274</td>
</tr>
<tr>
<td>10.2.1 Experimental Rig and Procedures</td>
<td>274</td>
</tr>
<tr>
<td>10.2.2 Mathematical Model of the Microreactor for Kinetic Tests</td>
<td>275</td>
</tr>
<tr>
<td>10.3 NH3/O2 Reacting System</td>
<td>276</td>
</tr>
<tr>
<td>10.4 NH3–NO/O2 Reacting System</td>
<td>282</td>
</tr>
<tr>
<td>10.5 NH3–NO/NO2 Reacting System</td>
<td>294</td>
</tr>
<tr>
<td>10.6 Conclusions</td>
<td>308</td>
</tr>
<tr>
<td>References</td>
<td>308</td>
</tr>
</tbody>
</table>
11 Lean NOx Reduction by NH₃ on Fe-Exchanged Zeolite and Layered Fe/Cu Zeolite Catalysts: Mechanisms, Kinetics, and Transport Effects ... 311
Michael P. Harold and Pranit Metkar
11.1 Introduction ... 311
11.2 Reaction System Performance Features 312
 11.2.1 NO Oxidation and NO₂ Decomposition 315
 11.2.2 NH₃ Oxidation .. 316
 11.2.3 Selective Catalytic Reduction of NOx 317
11.3 Kinetics and Mechanistic Considerations 324
 11.3.1 NO Oxidation .. 325
 11.3.2 Standard SCR Reaction 331
 11.3.3 Ammonia Inhibition .. 333
 11.3.4 Selective Catalytic Reaction with NO and NO₂ 334
11.4 Reaction and Transport Interactions 343
11.5 Reactor Modeling Developments .. 348
11.6 Concluding Remarks .. 353
References ... 354

12 Kinetic Modeling of Ammonia SCR for Cu-Zeolite Catalysts 357
Louise Olsson
12.1 Introduction ... 357
12.2 Kinetic Models for Ammonia and Water Storage Over Cu-Zeolites ... 358
 12.2.1 Global Kinetic Model for Ammonia Storage and Desorption 361
 12.2.2 Detailed Kinetic Model for Ammonia and Water Storage 362
12.3 Kinetic Models for Ammonia Oxidation Over Cu-Zeolites ... 364
 12.3.1 Global Kinetic Model for Ammonia Oxidation 364
 12.3.2 Detailed Kinetic Model for Ammonia Oxidation 364
12.4 Kinetic Models for NOₓ Storage and NO Oxidation Over Cu-Zeolites 365
 12.4.1 Detailed Kinetic Model for NO Oxidation 365
 12.4.2 Global Kinetic Model for NO Oxidation 369
12.5 Kinetic Models for SCR Reactions Over Cu-Zeolites 371
 12.5.1 Global Kinetic Models for SCR Over Cu-Zeolites ... 371
 12.5.2 Detailed Kinetic Models for SCR Over Cu-Zeolites 376
12.6 Conclusions ... 381
References ... 381
Part V Modeling and Control

13 SCR Reactor Models for Flow-Through and Wall-Flow Converters

Dimitrios Karamitros and Grigorios Koltsakis

13.1 Introduction ... 385
13.2 Fundamentals of Flow-Through Catalyst Modeling 386
 13.2.1 Balance Equations 387
 13.2.2 Washcoat Internal Diffusion Modeling 389
 13.2.3 Multidimensional Model Extension 391
13.3 Reaction Modeling 392
 13.3.1 Adsorption Model 392
 13.3.2 de-NO\textsubscript{x} Reactions 394
 13.3.3 Parameter Calibration 397
13.4 Importance of Washcoat Diffusion Modeling 397
 13.4.1 Experimental Results 398
 13.4.2 Simulation Study and Effective Diffusivity Investigation 398
13.5 From Lab Reactor Tests to Real-World System Modeling 400
 13.5.1 Overview of Model Parameterization Approaches 400
 13.5.2 Microreactor and Monolith Reactor Tests 400
 13.5.3 Real-World Full-Scale Applications 402
13.6 Fundamentals of SCR on DPF Modeling 403
 13.6.1 Wall-Flow Filter Model 403
 13.6.2 SCR Kinetic Model and Soot Oxidation Kinetics 406
 13.6.3 Wall-Flow Versus Flow-Through Monoliths 407
 13.6.4 Interactions Between Soot and de-NO\textsubscript{x} Activity 408
13.7 Integrated Exhaust System Modeling 412
 13.7.1 Model-Based DPF + SCR System Optimization 413
 13.7.2 Combined LNT-SCR Concepts 416
 13.7.3 Combined SCR-ASC Concept 418
13.8 Conclusion: Perspectives 419
References ... 422

14 Diesel Engine SCR Systems: Modeling, Measurements, and Control

Ming-Feng Hsieh and Junmin Wang

14.1 Introduction ... 425
14.2 SCR Control-Oriented Modeling 426
 14.2.1 Introduction ... 426
 14.2.2 Main SCR Reactions 426
 14.2.3 Control-Oriented SCR Model 427
14.3 SCR Sensing and Estimation Systems 430
 14.3.1 NO\textsubscript{x} Sensor NH\textsubscript{3} Cross-Sensitivity 431
14.3.2 SCR Catalyst Ammonia Coverage
Ratio Estimation .. 437
14.4 SCR Control .. 441
 14.4.1 Control-Oriented SCR Model 442
 14.4.2 Controller Design and Architecture 443
 14.4.3 Experimental Setup 444
 14.4.4 Experimental Results of US06 Test Cycle 446
14.5 Conclusions ... 448
References ... 449

Part VI Ammonia Supply

15 DEF Systems and Aftertreatment Architecture Considerations 455
 Ryan Floyd, Levin Michael and Zafar Shaikh
 15.1 Role of Engine and Dosing Calibration 459
 15.2 Overview of Injection Technology and Spray Quality ... 461
 15.3 Overview of SCR System Mixing Devices 467
 15.4 SCR System Mixing Devices: Ford Practical Example ... 471
 15.5 Aftertreatment Architecture 474
 15.6 Deposit Mitigation: Practical Example 479
 15.7 Concluding Remarks 483
References ... 483

16 Ammonia Storage and Release in SCR Systems
for Mobile Applications 485
 Daniel Peitz, Andreas Bernhard and Oliver Kröcher
 16.1 Introduction .. 485
 16.2 Urea as Ammonia Precursor Compound 486
 16.2.1 Solid Urea 486
 16.2.2 Urea Solution 487
 16.2.3 Urea Thermolysis and Evaporation 487
 16.2.4 Urea Decomposition Byproducts and Catalyst Deactivation 489
 16.2.5 Catalytic Urea Decomposition 491
 16.3 Alternative Ammonia Precursor Compounds 493
 16.3.1 Cyanuric Acid 493
 16.3.2 Ammonium Formate 494
 16.3.3 Ammonium Carbamate 495
 16.3.4 Metal Ammine Chlorides 496
 16.3.5 Methanamide 498
 16.3.6 Guanidinium Salts 499
 16.3.7 Catalytic Decomposition of Alternative NH₃ Precursor Compounds 499
References ... 501
Gianluca Montenegro and Angelo Onorati
17.1 Introduction ... 507
17.2 1D Models for the Prediction of Gas Flows 508
17.2.1 Modeling the Thermal Aspects 510
17.2.2 Thermal and Hydrolytic Decomposition of Urea 516
17.2.3 Kinetic Model ... 517
17.3 Multidimensional Models 521
17.3.1 Governing Equations 521
17.3.2 Modeling the UWS Injection 526
17.3.3 Modeling the Formation of Liquid Film 532
17.3.4 Discretization of Source Terms and Equations 535
17.3.5 Examples of CFD Application 538
References .. 547

Part VII Integrated Systems

18 Dual-Layer Ammonia Slip Catalysts for Automotive SCR Exhaust Gas Aftertreatment: An Experimental and Modeling Study ... 553
Isabella Nova, Massimo Colombo, Enrico Tronconi,
Volker Schmeißer, Brigitte Bandl-Konrad and Lisa Zimmermann
18.1 Introduction ... 554
18.2 Methods ... 556
18.2.1 Experimental .. 557
18.2.2 Modeling ... 558
18.3 Derivation and Validation of the SCR Model 561
18.3.1 Reaction Network and Kinetic Scheme
Over the SCR Component ... 561
18.3.2 Kinetic Fit .. 566
18.3.3 Model Validation .. 567
18.4 Derivation and Validation of the PGM Catalyst Model 567
18.4.1 Reaction Network and Kinetic Scheme
Over the PGM Component ... 567
18.4.2 Model Fit ... 573
18.4.3 Model Validation ... 573
18.5 Analysis and Modeling of SCR/PGM Interactions 575
18.5.1 Experimental Study of SCR/PGM Interactions 575
18.5.2 Predictive Simulations of the SCR/PGM
Combined Systems ... 577
18.6 Modeling of Dual-Layer Monolith ASC 579
 18.6.1 Development of a Dual-Layer Monolith Model 579
 18.6.2 Validation of the Dual-Layer Monolith ASC Model 581
18.7 Conclusions ... 583
References ... 584

19 NSR–SCR Combined Systems: Production and Use of Ammonia .. 587
Fabien Can, Xavier Courtois and Daniel Duprez
19.1 Introduction ... 587
19.2 NH₃ Emission from NSR Catalysts 588
 19.2.1 The NSR Process ... 588
 19.2.2 Ammonia Formation Pathways 589
 19.2.3 Influencing Parameters/Ammonia Reactivity 591
 19.2.4 Conclusion ... 596
19.3 Coupling of NOx Trap and NH₃–SCR Catalysts 596
 19.3.1 Emergence and Development of the NSR–SCR Coupling Concept ... 596
 19.3.2 Coupling of Pt Catalysts with Zeolites 598
 19.3.3 Coupling of Pt(RhPd)/BaO/Al₂O₃ with Cu–Zeolite Catalysts .. 598
 19.3.4 Coupling of Pt(RhPd)/BaO/Al₂O₃ with Fe–Zeolite Catalysts .. 603
 19.3.5 Other Systems Including Tungsten-Based Catalysts ... 606
19.4 Selective Catalytic Reduction of NOx by Ammonia (NH₃–SCR) .. 608
 19.4.1 Mechanistic Aspects of the SCR Reaction 608
 19.4.2 Effect of Zeolite Framework 610
 19.4.3 Role of Acidic Sites .. 611
 19.4.4 Active Sites and Performances of Cu–Zeolite, Fe–Zeolite, and Other Systems in NH₃–SCR 612
19.5 Conclusion and Perspective 614
References ... 615

20 Integration of SCR Functionality into Diesel Particulate Filters .. 623
Thorsten Boger
20.1 Introduction ... 624
20.2 Diesel Particulate Filter Technologies 626
 20.2.1 Diesel Particulate Filter Designs and Materials 626
 20.2.2 Catalyst Coatings for Diesel Particulate Filters 629
20.3 Performance Considerations for SCR Integrated Diesel Particulate Filters
 20.3.1 Pressure Drop and Permeability 630
 20.3.2 Filtration ... 636
 20.3.3 Filter Regeneration, Thermal Management, and Durability 640
 20.3.4 DeNOx Efficiency .. 643
20.4 Modeling of SCR Integrated Particulate Filters 645
20.5 Application Examples 648
 20.5.1 Light Duty ... 648
 20.5.2 Heavy Duty ... 650
20.6 Summary ... 651
References ... 652

Part VIII Case Histories

21 Development of the 2010 Ford Diesel Truck Catalyst System 659
Christine Lambert and Giovanni Cavataio
21.1 Introduction .. 660
21.2 Early Research at Ford on Lean NOx Control for Diesel Vehicles 661
21.3 Ford’s Research Program on a Prototype Light-Duty Diesel Truck 663
 21.3.1 SCR System Design 663
 21.3.2 DOC Development for SCR Systems 664
 21.3.3 SCR Catalyst Formulations 666
 21.3.4 Vehicle System Results 666
21.4 Migration of Research into a Production Vehicle Program 668
 21.4.1 Vehicle Program Needs for Lean NOx Control 668
 21.4.2 Catalyst and System Design Options 669
21.5 Development Challenges Associated with SCR Catalyst Systems 670
 21.5.1 Thermal Stability of the DOC 670
 21.5.2 Thermal Stability of the SCR Catalyst 671
 21.5.3 Ammonia Storage Management 674
 21.5.4 HC Poisoning/Coking of Zeolitic SCR Catalysts 676
 21.5.5 Precious Metal Poisoning 679
 21.5.6 Sulfur Effects on Catalysts 681
 21.5.7 Urea Injection/Mixing 682
 21.5.8 Urea Specifications and Refill 682
21.6 Environmental Impact of Medium-Duty Diesels:
Current and Future .. 683
 21.6.1 NOx Emissions ... 683
 21.6.2 Greenhouse Gas Footprint (CO₂, CH₄, N₂O) 684
 21.6.3 Use of Base Metals, Pd Rich Catalysts 684

21.7 Conclusion .. 686
References .. 687

22 Model-Based Approaches to Exhaust Aftertreatment
System Development .. 691
Michel Weibel, Volker Schmeißer and Frank Hofmann

 22.1 Introduction .. 692
 22.2 Modeling of the Exhaust Gas Aftertreatment System 693
 22.2.1 Total System Simulation 693
 22.2.2 Model Structure ... 694
 22.2.3 Kinetics and Parameterization 695
 22.3 Simulation Methods in the Development Process 696
 22.3.1 Demands of the Development Process 696
 22.3.2 The Virtual Testbench Concept 697
 22.3.3 Development of an AdBlue® Dosing Control Strategy 697
 22.4 Outlook: On-board Model-Based SCR Control 704
 22.5 Summary .. 705
References .. 706

About the Editors .. 709

Index ... 711
Urea-SCR Technology for deNOx After Treatment of Diesel Exhausts
Nova, I.; Tronconi, E. (Eds.)
2014, XX, 716 p. 411 illus., 292 illus. in color., Hardcover
ISBN: 978-1-4899-8070-0