Part I Selective Catalytic Reduction Technology

1 **Review of Selective Catalytic Reduction (SCR) and Related Technologies for Mobile Applications**
3
Timothy V. Johnson
1.1 Introduction
1.2 Regulatory Overview
1.2.1 Heavy-Duty Truck Regulations
1.2.2 Light-Duty Regulations
1.3 Engine Developments
1.3.1 Heavy-Duty Engines
1.3.2 Light-Duty Diesel Engines
1.4 SCR Technologies
1.4.1 SCR System Introduction
1.4.2 Urea Delivery System
1.4.3 Alternative Sources for Ammonia and Systems
1.4.4 DOC Overview
1.4.5 SCR Catalysts
1.4.6 Ammonia Slip Catalysts
1.5 SCR System Design
1.6 Onboard Generation of Ammonia Using Lean NOx Traps
1.7 Outlook
1.8 Conclusions
1.8.1 Regulations and Engine Technologies
1.8.2 Onboard Ammonia Delivery Systems and SCR Catalyst Systems
1.8.3 Outlook
References

2 **SCR Technology for Off-highway (Large Diesel Engine) Applications**
33
Daniel Chatterjee and Klaus Rusch
2.1 Introduction
2.2 Off-highway Emission Legislation
Part II Catalysts

3 Vanadia-Based Catalysts for Mobile SCR .. 65
 Jonas Jansson
 3.1 Introduction ... 65
 3.2 Legislation ... 66
 3.3 Main SCR Reactions .. 67
 3.4 Urea Injection .. 68
 3.5 Properties of Vanadia SCR Catalyst 68
 3.6 Reaction Mechanism .. 71
 3.7 Function/Principle Design .. 73
 3.8 Dimensioning of SCR System ... 76
 3.9 Effect of NO₂ ... 81
 3.10 Aging of Vanadia SCR Catalysts 83
 3.10.1 Thermal Aging ... 83
 3.10.2 Impact of Sulfur ... 85
 3.10.3 Alkali Metals and Alkaline Earth Metals 87
 3.10.4 Oil Poisons ... 88
 3.10.5 Hydrocarbons ... 90
 3.10.6 Arsenic and Lead .. 91
 3.10.7 Biofuel .. 91
 3.10.8 In-use Aging Evaluation .. 92
 3.11 Summary and Conclusions ... 92
 References ... 93
4 Fe-Zeolite Functionality, Durability, and Deactivation.
Mechanisms in the Selective Catalytic Reduction (SCR)
of NO\textsubscript{x} with Ammonia ... 97
Todd J. Toops, Josh A. Pihl and William P. Partridge
4.1 Introduction .. 97
4.2 Experimental Considerations in Evaluating
and Aging Catalysts .. 99
4.3 Fe-Zeolite NO\textsubscript{x} Reduction Characteristics 104
4.4 Durability, Aging Techniques, and Deactivation Mechanism
Affecting Performance .. 111
4.5 Summary ... 118
References ... 119

5 Cu/Zeolite SCR Catalysts for Automotive Diesel NOX
Emission Control .. 123
Hai-Ying Chen
5.1 Introduction .. 123
5.2 Chemistry and Functionality of Cu/Zeolite SCR Catalysts ... 124
5.3 Deactivation Mechanisms of Cu/Zeolite SCR Catalysts 126
5.3.1 Hydrothermal Deactivation 126
5.3.2 Hydrocarbon Storage, Inhibition, and Poisoning 132
5.3.3 Sulfur Poisoning ... 133
5.3.4 Urea and Urea Deposit Related Catalyst
Deactivation ... 133
5.3.5 Chemical Poisoning ... 134
5.4 Development of Small-Pore Zeolite Supported
Cu SCR Catalysts .. 135
5.5 Investigation on the Superior Hydrothermal Stability
of Small-Pore Zeolite Supported Cu SCR Catalyst 140
5.6 Investigation on the Active Cu Sites in Small-Pore
Zeolite Supported Cu SCR Catalysts 142
5.7 Summary ... 143
References ... 144

6 Low-Temperature Selective Catalytic Reduction (SCR) of NO\textsubscript{x}
with NH\textsubscript{3} Over Zeolites and Metal Oxide-Based Catalysts
and Recent Developments of H\textsubscript{2}-SCR 149
Gongshin Qi, Lifeng Wang and Ralph T. Yang
6.1 Ammonia-SCR ... 149
6.1.1 Introduction .. 149
6.1.2 Catalysts and Mechanistic Aspects
of the Low-Temperature Ammonia-SCR 151
<table>
<thead>
<tr>
<th>Part</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.2</td>
<td>H₂-SCR.</td>
</tr>
<tr>
<td>6.2.1</td>
<td>Introduction</td>
</tr>
<tr>
<td>6.2.2</td>
<td>Catalysts and Mechanistic Aspects of H₂-SCR</td>
</tr>
<tr>
<td>6.3</td>
<td>Challenges and Prospective</td>
</tr>
<tr>
<td>References</td>
<td>172</td>
</tr>
</tbody>
</table>

Part III Mechanistic Aspects

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Active Sites for Selective Catalytic Reduction</td>
</tr>
<tr>
<td></td>
<td>Wolfgang Grünert</td>
</tr>
<tr>
<td>7.1</td>
<td>Introduction</td>
</tr>
<tr>
<td>7.2</td>
<td>Strategies and Methods for the Identification of Active Sites</td>
</tr>
<tr>
<td>7.3</td>
<td>Supported Vanadia Catalysts</td>
</tr>
<tr>
<td>7.4</td>
<td>Zeolite-Based Catalysts</td>
</tr>
<tr>
<td>7.4.1</td>
<td>Fe Zeolites</td>
</tr>
<tr>
<td>7.4.2</td>
<td>Cu Zeolites</td>
</tr>
<tr>
<td>7.5</td>
<td>Recent Catalyst Development</td>
</tr>
<tr>
<td>7.6</td>
<td>Concluding Remarks</td>
</tr>
<tr>
<td>References</td>
<td>211</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Mechanistic Aspect of NO–NH₃–O₂ Reacting System</td>
</tr>
<tr>
<td></td>
<td>Masaoki Iwasaki</td>
</tr>
<tr>
<td>8.1</td>
<td>Introduction</td>
</tr>
<tr>
<td>8.2</td>
<td>Steady-State Reaction Analysis</td>
</tr>
<tr>
<td>8.2.1</td>
<td>NH₃/NO/O₂, NH₃/O₂, and NO/O₂ Reactions</td>
</tr>
<tr>
<td>8.2.2</td>
<td>Apparent Activation Energy</td>
</tr>
<tr>
<td>8.2.3</td>
<td>Apparent Reaction Orders</td>
</tr>
<tr>
<td>8.2.4</td>
<td>Relationship with NO Oxidation Activity</td>
</tr>
<tr>
<td>8.2.5</td>
<td>Effect of Coexisting Gases and Poisoning</td>
</tr>
<tr>
<td>8.3</td>
<td>Transient Reaction Analysis</td>
</tr>
<tr>
<td>8.3.1</td>
<td>Periodic NH₃ Supply</td>
</tr>
<tr>
<td>8.3.2</td>
<td>NO Pulse Reaction</td>
</tr>
<tr>
<td>8.3.3</td>
<td>In Situ FT-IR Analysis</td>
</tr>
<tr>
<td>8.4</td>
<td>Reaction Mechanisms</td>
</tr>
<tr>
<td>8.4.1</td>
<td>Vanadium-Based Catalysts</td>
</tr>
<tr>
<td>8.4.2</td>
<td>Fe- or Cu-Exchanged Zeolite Catalysts</td>
</tr>
<tr>
<td>8.5</td>
<td>Conclusions</td>
</tr>
<tr>
<td>References</td>
<td>244</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>The Role of NO₂ in the NH₃–SCR Catalytic Chemistry</td>
</tr>
<tr>
<td></td>
<td>Enrico Tronconi and Isabella Nova</td>
</tr>
<tr>
<td>9.1</td>
<td>Introduction</td>
</tr>
<tr>
<td>9.2</td>
<td>Experimental</td>
</tr>
</tbody>
</table>
9.3 Surface Storage of NOx .. 249
 9.3.1 NO\textsubscript{2} Adsorption/Desorption 249
 9.3.2 FTIR in Situ Study of NO\textsubscript{2} Adsorption........ 250
 9.3.3 Effect of the Catalyst Redox State
 on NO\textsubscript{2} Adsorption 251
9.4 The Role of Surface Nitrates in the Fast SCR Mechanism 253
 9.4.1 NH\textsubscript{3} + NO\textsubscript{x} Temperature Programmed Reaction
 (TPR) Runs ... 253
 9.4.2 Role of Nitrates in the NO/NO\textsubscript{2}–NH\textsubscript{3}
 SCR Mechanism 255
9.5 Mechanistic Studies by Transient Response Methods 255
 9.5.1 Reactivity of Surface Nitrates with NO
 and with NH\textsubscript{3} 256
 9.5.2 The Role of Nitrites 257
 9.5.3 Overall Mechanistic Scheme 258
 9.5.4 Ammonia Blocking of Nitrates Reduction 259
 9.5.5 Considerations on the Red-ox Nature of the
 NH\textsubscript{3}–SCR Mechanisms 260
 9.5.6 Higher Temperatures: The NO\textsubscript{2}–SCR Reaction . . 261
 9.5.7 Selectivity Issues: The Formation
 of NH\textsubscript{4}NO\textsubscript{3}, N\textsubscript{2}O 262
9.6 Feeding Nitrates: The Enhanced SCR Reaction 263
 9.6.1 The Boosting Action of Ammonium Nitrate 263
 9.6.2 Analysis of the Enhanced SCR Chemistry 267
9.7 Summary and Conclusions 268
References .. 269

Part IV Reaction Kinetics

10 Kinetics of NH\textsubscript{3}-SCR Reactions Over
 V\textsubscript{2}O\textsubscript{5}–WO\textsubscript{3}/TiO\textsubscript{2} Catalyst 273
 Isabella Nova and Enrico Tronconi
 10.1 Introduction .. 273
 10.2 Methods .. 274
 10.2.1 Experimental Rig and Procedures 274
 10.2.2 Mathematical Model of the Microreactor
 for Kinetic Tests 275
 10.3 NH\textsubscript{3}/O\textsubscript{2} Reacting System 276
 10.4 NH\textsubscript{3}–NO/O\textsubscript{2} Reacting System 282
 10.5 NH\textsubscript{3}–NO/NO\textsubscript{2} Reacting System 294
 10.6 Conclusions ... 308
References .. 308
11 Lean NOx Reduction by NH₃ on Fe-Exchanged Zeolite and Layered Fe/Cu Zeolite Catalysts: Mechanisms, Kinetics, and Transport Effects. .. 311
Michael P. Harold and Pranit Metkar
11.1 Introduction .. 311
11.2 Reaction System Performance Features 312
 11.2.1 NO Oxidation and NO₂ Decomposition 315
 11.2.2 NH₃ Oxidation ... 316
 11.2.3 Selective Catalytic Reduction of NOx 317
11.3 Kinetics and Mechanistic Considerations 324
 11.3.1 NO Oxidation ... 325
 11.3.2 Standard SCR Reaction .. 331
 11.3.3 Ammonia Inhibition ... 333
 11.3.4 Selective Catalytic Reaction with NO and NO₂ 334
11.4 Reaction and Transport Interactions 343
11.5 Reactor Modeling Developments 348
11.6 Concluding Remarks .. 353
References ... 354

12 Kinetic Modeling of Ammonia SCR for Cu-Zeolite Catalysts 357
Louise Olsson
12.1 Introduction .. 357
12.2 Kinetic Models for Ammonia and Water Storage
 Over Cu-Zeolites .. 358
 12.2.1 Global Kinetic Model for Ammonia
 Storage and Desorption .. 361
 12.2.2 Detailed Kinetic Model for Ammonia
 and Water Storage ... 362
12.3 Kinetic Models for Ammonia Oxidation Over Cu-Zeolites ... 364
 12.3.1 Global Kinetic Model for Ammonia Oxidation 364
 12.3.2 Detailed Kinetic Model for Ammonia Oxidation 364
12.4 Kinetic Models for NOₓ Storage and NO Oxidation
 Over Cu-Zeolites .. 365
 12.4.1 Detailed Kinetic Model for NO Oxidation 365
 12.4.2 Global Kinetic Model for NO Oxidation 369
12.5 Kinetic Models for SCR Reactions Over Cu-Zeolites 371
 12.5.1 Global Kinetic Models for SCR Over Cu-Zeolites 371
 12.5.2 Detailed Kinetic Models for SCR
 Over Cu-Zeolites ... 376
12.6 Conclusions ... 381
References ... 381
Part V Modeling and Control

13 SCR Reactor Models for Flow-Through and Wall-Flow Converters .. 385
Dimitrios Karamitros and Grigorios Koltsakis
13.1 Introduction ... 385
13.2 Fundamentals of Flow-Through Catalyst Modeling 386
13.2.1 Balance Equations 387
13.2.2 Washcoat Internal Diffusion Modeling 389
13.2.3 Multidimensional Model Extension 391
13.3 Reaction Modeling 392
13.3.1 Adsorption Model 392
13.3.2 de-NOx Reactions 394
13.3.3 Parameter Calibration 397
13.4 Importance of Washcoat Diffusion Modeling 397
13.4.1 Experimental Results 398
13.4.2 Simulation Study and Effective Diffusivity Investigation 398
13.5 From Lab Reactor Tests to Real-World System Modeling 400
13.5.1 Overview of Model Parameterization Approaches 400
13.5.2 Microreactor and Monolith Reactor Tests 400
13.5.3 Real-World Full-Scale Applications 402
13.6 Fundamentals of SCR on DPF Modeling 403
13.6.1 Wall-Flow Filter Model 403
13.6.2 SCR Kinetic Model and Soot Oxidation Kinetics 406
13.6.3 Wall-Flow Versus Flow-Through Monoliths 407
13.6.4 Interactions Between Soot and de-NOx Activity 408
13.7 Integrated Exhaust System Modeling 412
13.7.1 Model-Based DPF + SCR System Optimization 413
13.7.2 Combined LNT-SCR Concepts 416
13.7.3 Combined SCR-ASC Concept 418
13.8 Conclusion: Perspectives 419
References ... 422

14 Diesel Engine SCR Systems: Modeling, Measurements, and Control .. 425
Ming-Feng Hsieh and Junmin Wang
14.1 Introduction ... 425
14.2 SCR Control-Oriented Modeling 426
14.2.1 Introduction 426
14.2.2 Main SCR Reactions 426
14.2.3 Control-Oriented SCR Model 427
14.3 SCR Sensing and Estimation Systems 430
14.3.1 NOx Sensor NH3 Cross-Sensitivity 431
14.3.2 SCR Catalyst Ammonia Coverage
 Ratio Estimation .. 437
14.4 SCR Control .. 441
 14.4.1 Control-Oriented SCR Model 442
 14.4.2 Controller Design and Architecture 443
 14.4.3 Experimental Setup .. 444
 14.4.4 Experimental Results of US06 Test Cycle 446
14.5 Conclusions .. 448
References ... 449

Part VI Ammonia Supply

15 DEF Systems and Aftertreatment Architecture Considerations ... 455
 Ryan Floyd, Levin Michael and Zafar Shaikh
 15.1 Role of Engine and Dosing Calibration 459
 15.2 Overview of Injection Technology and Spray Quality 461
 15.3 Overview of SCR System Mixing Devices 467
 15.4 SCR System Mixing Devices: Ford Practical Example 471
 15.5 Aftertreatment Architecture 474
 15.6 Deposit Mitigation: Practical Example 479
 15.7 Concluding Remarks ... 483
References ... 483

16 Ammonia Storage and Release in SCR Systems for Mobile Applications ... 485
 Daniel Peitz, Andreas Bernhard and Oliver Kröcher
 16.1 Introduction ... 485
 16.2 Urea as Ammonia Precursor Compound 486
 16.2.1 Solid Urea .. 486
 16.2.2 Urea Solution ... 487
 16.2.3 Urea Thermolysis and Evaporation 487
 16.2.4 Urea Decomposition Byproducts and Catalyst Deactivation 489
 16.2.5 Catalytic Urea Decomposition 491
 16.3 Alternative Ammonia Precursor Compounds 493
 16.3.1 Cyanuric Acid .. 493
 16.3.2 Ammonium Formate .. 494
 16.3.3 Ammonium Carbamate 495
 16.3.4 Metal Ammine Chlorides 496
 16.3.5 Methanamide .. 498
 16.3.6 Guanidinium Salts .. 499
 16.3.7 Catalytic Decomposition of Alternative NH₃ Precursor Compounds 499
References ... 501
17 Modeling the Gas Flow Process Inside Exhaust Systems: One Dimensional and Multidimensional Approaches 507
Gianluca Montenegro and Angelo Onorati
17.1 Introduction ... 507
17.2 1D Models for the Prediction of Gas Flows 508
17.2.1 Modeling the Thermal Aspects 510
17.2.2 Thermal and Hydrolytic Decomposition of Urea 516
17.2.3 Kinetic Model .. 517
17.3 Multidimensional Models .. 521
17.3.1 Governing Equations ... 521
17.3.2 Modeling the UWS Injection 526
17.3.3 Modeling the Formation of Liquid Film 532
17.3.4 Discretization of Source Terms and Equations 535
17.3.5 Examples of CFD Application 538
References ... 547

Part VII Integrated Systems

18 Dual-Layer Ammonia Slip Catalysts for Automotive SCR Exhaust Gas Aftertreatment: An Experimental and Modeling Study 553
Isabella Nova, Massimo Colombo, Enrico Tronconi, Volker Schmeißer, Brigitte Bandl-Konrad and Lisa Zimmermann
18.1 Introduction .. 554
18.2 Methods ... 556
18.2.1 Experimental ... 557
18.2.2 Modeling .. 558
18.3 Derivation and Validation of the SCR Model 561
18.3.1 Reaction Network and Kinetic Scheme Over the SCR Component .. 561
18.3.2 Kinetic Fit .. 566
18.3.3 Model Validation .. 567
18.4 Derivation and Validation of the PGM Catalyst Model 567
18.4.1 Reaction Network and Kinetic Scheme Over the PGM Component .. 567
18.4.2 Model Fit ... 573
18.4.3 Model Validation .. 573
18.5 Analysis and Modeling of SCR/PGM Interactions 575
18.5.1 Experimental Study of SCR/PGM Interactions 575
18.5.2 Predictive Simulations of the SCR/PGM Combined Systems .. 577
18.6 Modeling of Dual-Layer Monolith ASC

18.6.1 Development of a Dual-Layer Monolith Model

18.6.2 Validation of the Dual-Layer Monolith ASC Model

18.7 Conclusions

References

19 NSR–SCR Combined Systems: Production and Use of Ammonia

Fabien Can, Xavier Courtois and Daniel Duprez

19.1 Introduction

19.2 NH₃ Emission from NSR Catalysts

19.2.1 The NSR Process

19.2.2 Ammonia Formation Pathways

19.2.3 Influencing Parameters/Ammonia Reactivity

19.2.4 Conclusion

19.3 Coupling of NOx Trap and NH₃–SCR Catalysts

19.3.1 Emergence and Development of the NSR–SCR Coupling Concept

19.3.2 Coupling of Pt Catalysts with Zeolites

19.3.3 Coupling of Pt(RhPd)/BaO/Al₂O₃ with Cu–Zeolite Catalysts

19.3.4 Coupling of Pt(RhPd)/BaO/Al₂O₃ with Fe–Zeolite Catalysts

19.3.5 Other Systems Including Tungsten-Based Catalysts

19.4 Selective Catalytic Reduction of NOx by Ammonia (NH₃–SCR)

19.4.1 Mechanistic Aspects of the SCR Reaction

19.4.2 Effect of Zeolite Framework

19.4.3 Role of Acidic Sites

19.4.4 Active Sites and Performances of Cu–Zeolite, Fe–Zeolite, and Other Systems in NH₃–SCR

19.5 Conclusion and Perspective

References

20 Integration of SCR Functionality into Diesel Particulate Filters

Thorsten Boger

20.1 Introduction

20.2 Diesel Particulate Filter Technologies

20.2.1 Diesel Particulate Filter Designs and Materials

20.2.2 Catalyst Coatings for Diesel Particulate Filters
20.3 Performance Considerations for SCR Integrated Diesel Particulate Filters
20.3.1 Pressure Drop and Permeability
20.3.2 Filtration
20.3.3 Filter Regeneration, Thermal Management, and Durability
20.3.4 DeNOx Efficiency
20.4 Modeling of SCR Integrated Particulate Filters
20.5 Application Examples
20.5.1 Light Duty
20.5.2 Heavy Duty
20.6 Summary
References

Part VIII Case Histories

21 Development of the 2010 Ford Diesel Truck Catalyst System
Christine Lambert and Giovanni Cavataio
21.1 Introduction
21.2 Early Research at Ford on Lean NOx Control for Diesel Vehicles
21.3 Ford’s Research Program on a Prototype Light-Duty Diesel Truck
21.3.1 SCR System Design
21.3.2 DOC Development for SCR Systems
21.3.3 SCR Catalyst Formulations
21.3.4 Vehicle System Results
21.4 Migration of Research into a Production Vehicle Program
21.4.1 Vehicle Program Needs for Lean NOx Control
21.4.2 Catalyst and System Design Options
21.5 Development Challenges Associated with SCR Catalyst Systems
21.5.1 Thermal Stability of the DOC
21.5.2 Thermal Stability of the SCR Catalyst
21.5.3 Ammonia Storage Management
21.5.4 HC Poisoning/Coking of Zeolitic SCR Catalysts
21.5.5 Precious Metal Poisoning
21.5.6 Sulfur Effects on Catalysts
21.5.7 Urea Injection/Mixing
21.5.8 Urea Specifications and Refill
21.6 Environmental Impact of Medium-Duty Diesels:
 Current and Future 683
21.6.1 NOx Emissions 683
21.6.2 Greenhouse Gas Footprint (CO₂, CH₄, N₂O) 684
21.6.3 Use of Base Metals, Pd Rich Catalysts 684
21.7 Conclusion 686
References 687

22 Model-Based Approaches to Exhaust Aftertreatment
 System Development 691
Michel Weibel, Volker Schmeißer and Frank Hofmann
22.1 Introduction 692
22.2 Modeling of the Exhaust Gas Aftertreatment System 693
 22.2.1 Total System Simulation 693
 22.2.2 Model Structure 694
 22.2.3 Kinetics and Parameterization 695
22.3 Simulation Methods in the Development Process 696
 22.3.1 Demands of the Development Process 696
 22.3.2 The Virtual Testbench Concept 697
 22.3.3 Development of an AdBlue® Dosing
 Control Strategy 697
22.4 Outlook: On-board Model-Based SCR Control 704
22.5 Summary 705
References 706

About the Editors 709

Index ... 711
Urea-SCR Technology for deNOx After Treatment of Diesel Exhausts
Nova, I.; Tronconi, E. (Eds.)
2014, XX, 716 p. 411 illus., 292 illus. in color., Hardcover
ISBN: 978-1-4899-8070-0