Contents

Part I Selective Catalytic Reduction Technology

1 **Review of Selective Catalytic Reduction (SCR) and Related Technologies for Mobile Applications**
 Timothy V. Johnson
 1.1 Introduction .. 3
 1.2 Regulatory Overview 4
 1.2.1 Heavy-Duty Truck Regulations 4
 1.2.2 Light-Duty Regulations 5
 1.3 Engine Developments 6
 1.3.1 Heavy-Duty Engines 6
 1.3.2 Light-Duty Diesel Engines 8
 1.4 SCR Technologies 10
 1.4.1 SCR System Introduction 10
 1.4.2 Urea Delivery System 12
 1.4.3 Alternative Sources for Ammonia and Systems ... 13
 1.4.4 DOC Overview 14
 1.4.5 SCR Catalysts 15
 1.4.6 Ammonia Slip Catalysts 19
 1.5 SCR System Design 20
 1.6 Onboard Generation of Ammonia Using Lean NOx Traps 23
 1.7 Outlook .. 25
 1.8 Conclusions 26
 1.8.1 Regulations and Engine Technologies 26
 1.8.2 Onboard Ammonia Delivery Systems
 and SCR Catalyst Systems 26
 1.8.3 Outlook .. 27
 References .. 27

2 **SCR Technology for Off-highway (Large Diesel Engine) Applications**
 Daniel Chatterjee and Klaus Rusch
 2.1 Introduction 33
 2.2 Off-highway Emission Legislation 36
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.3</td>
<td>SCR Systems for High-Speed Engines</td>
<td>38</td>
</tr>
<tr>
<td>2.3.1</td>
<td>Small Ship Applications</td>
<td>39</td>
</tr>
<tr>
<td>2.3.2</td>
<td>Rail Applications</td>
<td>39</td>
</tr>
<tr>
<td>2.3.3</td>
<td>Gensets</td>
<td>40</td>
</tr>
<tr>
<td>2.4</td>
<td>Medium and Low-Speed Engines</td>
<td>42</td>
</tr>
<tr>
<td>2.4.1</td>
<td>Fuels and Sulfur</td>
<td>42</td>
</tr>
<tr>
<td>2.4.2</td>
<td>SCR Technology for Marine Applications</td>
<td>45</td>
</tr>
<tr>
<td>2.4.3</td>
<td>Low-Speed Engine Genset</td>
<td>45</td>
</tr>
<tr>
<td>2.5</td>
<td>Combined Systems</td>
<td>47</td>
</tr>
<tr>
<td>2.5.1</td>
<td>DPF + SCR</td>
<td>47</td>
</tr>
<tr>
<td>2.5.2</td>
<td>Combination of DeNoxation and DeSulfurization</td>
<td>51</td>
</tr>
<tr>
<td>2.6</td>
<td>System Integration</td>
<td>51</td>
</tr>
<tr>
<td>2.6.1</td>
<td>Reductant Supply</td>
<td>51</td>
</tr>
<tr>
<td>2.6.2</td>
<td>Canning Concepts</td>
<td>55</td>
</tr>
<tr>
<td>2.7</td>
<td>Control Strategies</td>
<td>56</td>
</tr>
<tr>
<td>2.8</td>
<td>Outlook</td>
<td>58</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>59</td>
</tr>
</tbody>
</table>

Part II Catalysts

3 Vanadia-Based Catalysts for Mobile SCR | 65

Jonas Jansson

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Introduction</td>
<td>65</td>
</tr>
<tr>
<td>3.2</td>
<td>Legislation</td>
<td>66</td>
</tr>
<tr>
<td>3.3</td>
<td>Main SCR Reactions</td>
<td>67</td>
</tr>
<tr>
<td>3.4</td>
<td>Urea Injection</td>
<td>68</td>
</tr>
<tr>
<td>3.5</td>
<td>Properties of Vanadia SCR Catalyst</td>
<td>68</td>
</tr>
<tr>
<td>3.6</td>
<td>Reaction Mechanism</td>
<td>71</td>
</tr>
<tr>
<td>3.7</td>
<td>Function/Principle Design</td>
<td>73</td>
</tr>
<tr>
<td>3.8</td>
<td>Dimensioning of SCR System</td>
<td>76</td>
</tr>
<tr>
<td>3.9</td>
<td>Effect of NO₂</td>
<td>81</td>
</tr>
<tr>
<td>3.10</td>
<td>Aging of Vanadia SCR Catalysts</td>
<td>83</td>
</tr>
<tr>
<td>3.10.1</td>
<td>Thermal Aging</td>
<td>83</td>
</tr>
<tr>
<td>3.10.2</td>
<td>Impact of Sulfur</td>
<td>85</td>
</tr>
<tr>
<td>3.10.3</td>
<td>Alkali Metals and Alkaline Earth Metals</td>
<td>87</td>
</tr>
<tr>
<td>3.10.4</td>
<td>Oil Poisons</td>
<td>88</td>
</tr>
<tr>
<td>3.10.5</td>
<td>Hydrocarbons</td>
<td>90</td>
</tr>
<tr>
<td>3.10.6</td>
<td>Arsenic and Lead</td>
<td>91</td>
</tr>
<tr>
<td>3.10.7</td>
<td>Biofuel</td>
<td>91</td>
</tr>
<tr>
<td>3.10.8</td>
<td>In-use Aging Evaluation</td>
<td>92</td>
</tr>
<tr>
<td>3.11</td>
<td>Summary and Conclusions</td>
<td>92</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>93</td>
</tr>
</tbody>
</table>
4 Fe-Zeolite Functionality, Durability, and Deactivation
 Mechanisms in the Selective Catalytic Reduction (SCR)
 of NO\textsubscript{x} with Ammonia 97
 Todd J. Toops, Josh A. Pihl and William P. Partridge
 4.1 Introduction .. 97
 4.2 Experimental Considerations in Evaluating
 and Aging Catalysts ... 99
 4.3 Fe-Zeolite NO\textsubscript{x} Reduction Characteristics 104
 4.4 Durability, Aging Techniques, and Deactivation Mechanism
 Affecting Performance 111
 4.5 Summary ... 118
 References .. 119

5 Cu/Zeolite SCR Catalysts for Automotive Diesel NO\textsubscript{x}
 Emission Control .. 123
 Hai-Ying Chen
 5.1 Introduction .. 123
 5.2 Chemistry and Functionality of Cu/Zeolite SCR Catalysts 124
 5.3 Deactivation Mechanisms of Cu/Zeolite SCR Catalysts 126
 5.3.1 Hydrothermal Deactivation 126
 5.3.2 Hydrocarbon Storage, Inhibition, and Poisoning 132
 5.3.3 Sulfur Poisoning ... 133
 5.3.4 Urea and Urea Deposit Related Catalyst
 Deactivation ... 133
 5.3.5 Chemical Poisoning 134
 5.4 Development of Small-Pore Zeolite Supported
 Cu SCR Catalysts .. 135
 5.5 Investigation on the Superior Hydrothermal Stability
 of Small-Pore Zeolite Supported Cu SCR Catalyst 140
 5.6 Investigation on the Active Cu Sites in Small-Pore
 Zeolite Supported Cu SCR Catalysts 142
 5.7 Summary ... 143
 References .. 144

6 Low-Temperature Selective Catalytic Reduction (SCR) of NO\textsubscript{x}
 with NH\textsubscript{3} Over Zeolites and Metal Oxide-Based Catalysts
 and Recent Developments of H\textsubscript{2}-SCR 149
 Gongshin Qi, Lifeng Wang and Ralph T. Yang
 6.1 Ammonia-SCR .. 149
 6.1.1 Introduction .. 149
 6.1.2 Catalysts and Mechanistic Aspects
 of the Low-Temperature Ammonia-SCR 151
6.2 H2-SCR ... 163
 6.2.1 Introduction 163
 6.2.2 Catalysts and Mechanistic Aspects of H2-SCR 165
6.3 Challenges and Prospective 171
References ... 172

Part III Mechanistic Aspects

7 Active Sites for Selective Catalytic Reduction 181
Wolfgang Grüner

 7.1 Introduction 181
 7.2 Strategies and Methods for the Identification of Active Sites ... 182
 7.3 Supported Vanadia Catalysts 193
 7.4 Zeolite-Based Catalysts 198
 7.4.1 Fe Zeolites 198
 7.4.2 Cu Zeolites 206
 7.5 Recent Catalyst Development 208
 7.6 Concluding Remarks 210
References ... 211

8 Mechanistic Aspect of NO–NH3–O2 Reacting System 221
Masaoki Iwasaki

 8.1 Introduction .. 221
 8.2 Steady-State Reaction Analysis 221
 8.2.1 NH3/NO/O2, NH3/O2, and NO/O2 Reactions 221
 8.2.2 Apparent Activation Energy 223
 8.2.3 Apparent Reaction Orders 224
 8.2.4 Relationship with NO Oxidation Activity 227
 8.2.5 Effect of Coexisting Gases and Poisoning 230
 8.3 Transient Reaction Analysis 233
 8.3.1 Periodic NH3 Supply 233
 8.3.2 NO Pulse Reaction 237
 8.3.3 In Situ FT-IR Analysis 238
 8.4 Reaction Mechanisms 240
 8.4.1 Vanadium-Based Catalysts 240
 8.4.2 Fe- or Cu-Exchanged Zeolite Catalysts 242
 8.5 Conclusions ... 244
References ... 244

9 The Role of NO2 in the NH3–SCR Catalytic Chemistry 247
Enrico Tronconi and Isabella Nova

 9.1 Introduction .. 247
 9.2 Experimental 248
9.3 Surface Storage of NOx ... 249
 9.3.1 NO₂ Adsorption/Desorption 249
 9.3.2 FTIR in Situ Study of NO₂ Adsorption 250
 9.3.3 Effect of the Catalyst Redox State
 on NO₂ Adsorption .. 251
9.4 The Role of Surface Nitrates in the Fast SCR Mechanism 253
 9.4.1 NH₃ + NOₓ Temperature Programmed Reaction
 (TPR) Runs .. 253
 9.4.2 Role of Nitrates in the NO/NO₂–NH₃
 SCR Mechanism ... 255
9.5 Mechanistic Studies by Transient Response Methods 255
 9.5.1 Reactivity of Surface Nitrates with NO
 and with NH₃ ... 256
 9.5.2 The Role of Nitrites ... 257
 9.5.3 Overall Mechanistic Scheme 258
 9.5.4 Ammonia Blocking of Nitrates Reduction 259
 9.5.5 Considerations on the Red-ox Nature of the
 NH₃–SCR Mechanisms 260
 9.5.6 Higher Temperatures: The NO₂–SCR Reaction 261
 9.5.7 Selectivity Issues: The Formation
 of NH₄NO₃, N₂O ... 262
9.6 Feeding Nitrates: The Enhanced SCR Reaction 263
 9.6.1 The Boosting Action of Ammonium Nitrate 263
 9.6.2 Analysis of the Enhanced SCR Chemistry 267
9.7 Summary and Conclusions ... 268
References .. 269

Part IV Reaction Kinetics

10 Kinetics of NH₃-SCR Reactions Over
 V₂O₅–WO₃/TiO₂ Catalyst 273
 Isabella Nova and Enrico Tronconi
 10.1 Introduction .. 273
 10.2 Methods ... 274
 10.2.1 Experimental Rig and Procedures 274
 10.2.2 Mathematical Model of the Microreactor
 for Kinetic Tests 275
 10.3 NH₃/O₂ Reacting System 276
 10.4 NH₃–NO/O₂ Reacting System 282
 10.5 NH₃–NO/NO₂ Reacting System 294
 10.6 Conclusions .. 308
References .. 308
11 Lean NOx Reduction by NH3 on Fe-Exchanged Zeolite
and Layered Fe/Cu Zeolite Catalysts: Mechanisms,
Kinetics, and Transport Effects. 311
Michael P. Harold and Pranit Metkar
11.1 Introduction ... 311
11.2 Reaction System Performance Features 312
 11.2.1 NO Oxidation and NO₂ Decomposition 315
 11.2.2 NH₃ Oxidation 316
 11.2.3 Selective Catalytic Reduction of NOx 317
11.3 Kinetics and Mechanistic Considerations 324
 11.3.1 NO Oxidation 325
 11.3.2 Standard SCR Reaction 331
 11.3.3 Ammonia Inhibition 333
 11.3.4 Selective Catalytic Reaction with NO and NO₂ . 334
11.4 Reaction and Transport Interactions 343
11.5 Reactor Modeling Developments 348
11.6 Concluding Remarks 353
References ... 354

12 Kinetic Modeling of Ammonia SCR for Cu-Zeolite Catalysts ... 357
Louise Olsson
12.1 Introduction ... 357
12.2 Kinetic Models for Ammonia and Water Storage
 Over Cu-Zeolites 358
 12.2.1 Global Kinetic Model for Ammonia Storage
 and Desorption 361
 12.2.2 Detailed Kinetic Model for Ammonia
 and Water Storage 362
12.3 Kinetic Models for Ammonia Oxidation Over Cu-Zeolites ...364
 12.3.1 Global Kinetic Model for Ammonia Oxidation . 364
 12.3.2 Detailed Kinetic Model for Ammonia Oxidation . 364
12.4 Kinetic Models for NOₓ Storage and NO Oxidation
 Over Cu-Zeolites 365
 12.4.1 Detailed Kinetic Model for NO Oxidation 365
 12.4.2 Global Kinetic Model for NO Oxidation 369
12.5 Kinetic Models for SCR Reactions Over Cu-Zeolites371
 12.5.1 Global Kinetic Models for SCR Over Cu-Zeolites . 371
 12.5.2 Detailed Kinetic Models for SCR
 Over Cu-Zeolites 376
12.6 Conclusions .. 381
References ... 381
Part V Modeling and Control

13 **SCR Reactor Models for Flow-Through and Wall-Flow Converters**

Dimitrios Karamitros and Grigorios Koltsakis

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.1</td>
<td>Introduction</td>
<td>385</td>
</tr>
<tr>
<td>13.2</td>
<td>Fundamentals of Flow-Through Catalyst Modeling</td>
<td>386</td>
</tr>
<tr>
<td>13.2.1</td>
<td>Balance Equations</td>
<td>387</td>
</tr>
<tr>
<td>13.2.2</td>
<td>Washcoat Internal Diffusion Modeling</td>
<td>389</td>
</tr>
<tr>
<td>13.2.3</td>
<td>Multidimensional Model Extension</td>
<td>391</td>
</tr>
<tr>
<td>13.3</td>
<td>Reaction Modeling</td>
<td>392</td>
</tr>
<tr>
<td>13.3.1</td>
<td>Adsorption Model</td>
<td>392</td>
</tr>
<tr>
<td>13.3.2</td>
<td>de-NO_x Reactions</td>
<td>394</td>
</tr>
<tr>
<td>13.3.3</td>
<td>Parameter Calibration</td>
<td>397</td>
</tr>
<tr>
<td>13.4</td>
<td>Importance of Washcoat Diffusion Modeling</td>
<td>397</td>
</tr>
<tr>
<td>13.4.1</td>
<td>Experimental Results</td>
<td>398</td>
</tr>
<tr>
<td>13.4.2</td>
<td>Simulation Study and Effective Diffusivity Investigation</td>
<td>398</td>
</tr>
<tr>
<td>13.5</td>
<td>From Lab Reactor Tests to Real-World System Modeling</td>
<td>400</td>
</tr>
<tr>
<td>13.5.1</td>
<td>Overview of Model Parameterization Approaches</td>
<td>400</td>
</tr>
<tr>
<td>13.5.2</td>
<td>Microreactor and Monolith Reactor Tests</td>
<td>400</td>
</tr>
<tr>
<td>13.5.3</td>
<td>Real-World Full-Scale Applications</td>
<td>402</td>
</tr>
<tr>
<td>13.6</td>
<td>Fundamentals of SCR on DPF Modeling</td>
<td>403</td>
</tr>
<tr>
<td>13.6.1</td>
<td>Wall-Flow Filter Model</td>
<td>403</td>
</tr>
<tr>
<td>13.6.2</td>
<td>SCR Kinetic Model and Soot Oxidation Kinetics</td>
<td>406</td>
</tr>
<tr>
<td>13.6.3</td>
<td>Wall-Flow Versus Flow-Through Monoliths</td>
<td>407</td>
</tr>
<tr>
<td>13.6.4</td>
<td>Interactions Between Soot and de-NO_x Activity</td>
<td>408</td>
</tr>
<tr>
<td>13.7</td>
<td>Integrated Exhaust System Modeling</td>
<td>412</td>
</tr>
<tr>
<td>13.7.1</td>
<td>Model-Based DPF + SCR System Optimization</td>
<td>413</td>
</tr>
<tr>
<td>13.7.2</td>
<td>Combined LNT-SCR Concepts</td>
<td>416</td>
</tr>
<tr>
<td>13.7.3</td>
<td>Combined SCR-ASC Concept</td>
<td>418</td>
</tr>
<tr>
<td>13.8</td>
<td>Conclusion: Perspectives</td>
<td>419</td>
</tr>
</tbody>
</table>

14 **Diesel Engine SCR Systems: Modeling, Measurements, and Control**

Ming-Feng Hsieh and Junmin Wang

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.1</td>
<td>Introduction</td>
<td>425</td>
</tr>
<tr>
<td>14.2</td>
<td>SCR Control-Oriented Modeling</td>
<td>426</td>
</tr>
<tr>
<td>14.2.1</td>
<td>Introduction</td>
<td>426</td>
</tr>
<tr>
<td>14.2.2</td>
<td>Main SCR Reactions</td>
<td>426</td>
</tr>
<tr>
<td>14.2.3</td>
<td>Control-Oriented SCR Model</td>
<td>427</td>
</tr>
<tr>
<td>14.3</td>
<td>SCR Sensing and Estimation Systems</td>
<td>430</td>
</tr>
<tr>
<td>14.3.1</td>
<td>NO_x Sensor NH3 Cross-Sensitivity</td>
<td>431</td>
</tr>
</tbody>
</table>
14.3.2 SCR Catalyst Ammonia Coverage
 Ratio Estimation .. 437
14.4 SCR Control .. 441
 14.4.1 Control-Oriented SCR Model 442
 14.4.2 Controller Design and Architecture 443
 14.4.3 Experimental Setup 444
 14.4.4 Experimental Results of US06 Test Cycle 446
14.5 Conclusions .. 448
References .. 449

Part VI Ammonia Supply

15 DEF Systems and Aftertreatment Architecture Considerations 455
 Ryan Floyd, Levin Michael and Zafar Shaikh
 15.1 Role of Engine and Dosing Calibration 459
 15.2 Overview of Injection Technology and Spray Quality 461
 15.3 Overview of SCR System Mixing Devices 467
 15.4 SCR System Mixing Devices: Ford Practical Example 471
 15.5 Aftertreatment Architecture 474
 15.6 Deposit Mitigation: Practical Example 479
 15.7 Concluding Remarks 483
References .. 483

16 Ammonia Storage and Release in SCR Systems
 for Mobile Applications 485
 Daniel Peitz, Andreas Bernhard and Oliver Kröcher
 16.1 Introduction .. 485
 16.2 Urea as Ammonia Precursor Compound 486
 16.2.1 Solid Urea .. 486
 16.2.2 Urea Solution 487
 16.2.3 Urea Thermolysis and Evaporation 487
 16.2.4 Urea Decomposition Byproducts and Catalyst Deactivation 489
 16.2.5 Catalytic Urea Decomposition 491
 16.3 Alternative Ammonia Precursor Compounds 493
 16.3.1 Cyanuric Acid 493
 16.3.2 Ammonium Formate 494
 16.3.3 Ammonium Carbamate 495
 16.3.4 Metal Ammine Chlorides 496
 16.3.5 Methanamide .. 498
 16.3.6 Guanidinium Salts 499
 16.3.7 Catalytic Decomposition of Alternative NH₃ Precursor Compounds 499
References .. 501
17 Modeling the Gas Flow Process Inside Exhaust Systems:
One Dimensional and Multidimensional Approaches 507
Gianluca Montenegro and Angelo Onorati
17.1 Introduction .. 507
17.2 1D Models for the Prediction of Gas Flows 508
17.2.1 Modeling the Thermal Aspects .. 510
17.2.2 Thermal and Hydrolytic Decomposition of Urea ... 516
17.2.3 Kinetic Model ... 517
17.3 Multidimensional Models ... 521
17.3.1 Governing Equations .. 521
17.3.2 Modeling the UWS Injection ... 526
17.3.3 Modeling the Formation of Liquid Film 532
17.3.4 Discretization of Source Terms and Equations 535
17.3.5 Examples of CFD Application ... 538
References ... 547

Part VII Integrated Systems

18 Dual-Layer Ammonia Slip Catalysts for Automotive SCR
Exhaust Gas Aftertreatment: An Experimental
and Modeling Study .. 553
Isabella Nova, Massimo Colombo, Enrico Tronconi,
Volker Schmeißer, Brigitte Bandl-Konrad and Lisa Zimmermann
18.1 Introduction .. 554
18.2 Methods .. 556
18.2.1 Experimental ... 557
18.2.2 Modeling ... 558
18.3 Derivation and Validation of the SCR Model 561
18.3.1 Reaction Network and Kinetic Scheme
Over the SCR Component ... 561
18.3.2 Kinetic Fit ... 566
18.3.3 Model Validation ... 567
18.4 Derivation and Validation of the PGM Catalyst Model 567
18.4.1 Reaction Network and Kinetic Scheme
Over the PGM Component .. 567
18.4.2 Model Fit ... 573
18.4.3 Model Validation ... 573
18.5 Analysis and Modeling of SCR/PGM Interactions 575
18.5.1 Experimental Study of SCR/PGM Interactions 575
18.5.2 Predictive Simulations of the SCR/PGM
Combined Systems ... 577
18.6 Modeling of Dual-Layer Monolith ASC 579
18.6.1 Development of a Dual-Layer Monolith Model 579
18.6.2 Validation of the Dual-Layer Monolith ASC Model ... 581
18.7 Conclusions ... 583
References ... 584

19 NSR–SCR Combined Systems: Production and Use of Ammonia 587
Fabien Can, Xavier Courtois and Daniel Duprez
19.1 Introduction .. 587
19.2 NH3 Emission from NSR Catalysts 588
19.2.1 The NSR Process ... 588
19.2.2 Ammonia Formation Pathways 589
19.2.3 Influencing Parameters/Ammonia Reactivity 591
19.2.4 Conclusion .. 596
19.3 Coupling of NOx Trap and NH3–SCR Catalysts 596
19.3.1 Emergence and Development of the NSR–SCR Coupling Concept .. 596
19.3.2 Coupling of Pt Catalysts with Zeolites 598
19.3.3 Coupling of Pt(RhPd)/BaO/Al2O3 with Cu–Zeolite Catalysts ... 598
19.3.4 Coupling of Pt(RhPd)/BaO/Al2O3 with Fe–Zeolite Catalysts ... 603
19.3.5 Other Systems Including Tungsten-Based Catalysts .. 606
19.4 Selective Catalytic Reduction of NOx by Ammonia (NH3–SCR) ... 608
19.4.1 Mechanistic Aspects of the SCR Reaction 608
19.4.2 Effect of Zeolite Framework 610
19.4.3 Role of Acidic Sites ... 611
19.4.4 Active Sites and Performances of Cu–Zeolite, Fe–Zeolite, and Other Systems in NH3–SCR 612
19.5 Conclusion and Perspective 614
References ... 615

20 Integration of SCR Functionality into Diesel Particulate Filters .. 623
Thorsten Boger
20.1 Introduction .. 624
20.2 Diesel Particulate Filter Technologies 626
20.2.1 Diesel Particulate Filter Designs and Materials 626
20.2.2 Catalyst Coatings for Diesel Particulate Filters 629
20.3 Performance Considerations for SCR Integrated Diesel Particulate Filters

20.3.1 Pressure Drop and Permeability
20.3.2 Filtration
20.3.3 Filter Regeneration, Thermal Management, and Durability
20.3.4 DeNOx Efficiency

20.4 Modeling of SCR Integrated Particulate Filters

20.5 Application Examples

20.5.1 Light Duty
20.5.2 Heavy Duty

20.6 Summary

References

Part VIII Case Histories

21 Development of the 2010 Ford Diesel Truck Catalyst System

Christine Lambert and Giovanni Cavataio

21.1 Introduction

21.2 Early Research at Ford on Lean NOx Control for Diesel Vehicles

21.3 Ford’s Research Program on a Prototype Light-Duty Diesel Truck

21.3.1 SCR System Design
21.3.2 DOC Development for SCR Systems
21.3.3 SCR Catalyst Formulations
21.3.4 Vehicle System Results

21.4 Migration of Research into a Production Vehicle Program

21.4.1 Vehicle Program Needs for Lean NOx Control
21.4.2 Catalyst and System Design Options

21.5 Development Challenges Associated with SCR Catalyst Systems

21.5.1 Thermal Stability of the DOC
21.5.2 Thermal Stability of the SCR Catalyst
21.5.3 Ammonia Storage Management
21.5.4 HC Poisoning/Coking of Zeolitic SCR Catalysts
21.5.5 Precious Metal Poisoning
21.5.6 Sulfur Effects on Catalysts
21.5.7 Urea Injection/Mixing
21.5.8 Urea Specifications and Refill
21.6 Environmental Impact of Medium-Duty Diesels:

- **Current and Future**: 683
- **NOx Emissions**: 683
- **Greenhouse Gas Footprint (CO₂, CH₄, N₂O)**: 684
- **Use of Base Metals, Pd Rich Catalysts**: 684

21.7 Conclusion: 686

References: 687

22 Model-Based Approaches to Exhaust Aftertreatment System Development

Michel Weibel, Volker Schmeißer and Frank Hofmann

- **Introduction**: 692
- **Modeling of the Exhaust Gas Aftertreatment System**: 693
 - **Total System Simulation**: 693
 - **Model Structure**: 694
 - **Kinetics and Parameterization**: 695
- **Simulation Methods in the Development Process**: 696
 - **Demands of the Development Process**: 696
 - **The Virtual Testbench Concept**: 697
 - **Development of an AdBlue® Dosing Control Strategy**: 697
- **Outlook: On-board Model-Based SCR Control**: 704
- **Summary**: 705

References: 706

About the Editors: 709

Index: 711
Urea-SCR Technology for deNOx After Treatment of Diesel Exhausts
Nova, L.; Tronconi, E. (Eds.)
2014, XX, 716 p. 411 illus., 292 illus. in color., Hardcover
ISBN: 978-1-4899-8070-0