Contents

1 Introduction ... 1
 1.1 Power System Low-frequency Oscillations 1
 1.2 Linearized Methods for the Analysis and Damping
 Control of Power System Oscillations 3
 1.3 FACTS and Grid-Connected ESS 5
 1.4 Controllers to Damp Power System Oscillations 7
 1.5 Design of Damping Controllers to Suppress Power
 System Oscillations .. 10
 1.6 Organization of the Book 12
 References .. 13

2 A Single-Machine Infinite-Bus Power System Installed
 with a Power System Stabilizer 17
 2.1 Linearized Model of a Single-Machine Infinite-Bus
 Power System Installed with a Power System Stabilizer 17
 2.1.1 General Linearized Mathematical Model 17
 2.1.2 Heffron–Phillips Model 26
 2.2 Modal Analysis .. 32
 2.2.1 Basis of Modal Analysis Theory 32
 2.2.2 Applications of Modal Analysis 37
 2.3 Damping Torque Analysis .. 42
 2.3.1 Damping Torque and Synchronizing Torque 42
 2.3.2 Damping Torque Analysis and Design
 of PSS by Phase Compensation 47
 2.4 Examples ... 53
 2.4.1 Linearized Mathematical Models of an Example Power
 System ... 53
 2.4.2 Modal Analysis of Example Power System 59
 2.4.3 Damping Torque Analysis of Example
 Power System .. 66

vii
2.4.4 Equivalence Between the Damping Torque and Modal Analysis .. 73
References ... 79

3 Damping Torque Analysis of Thyristor-Based FACTS Stabilizers Installed in Single-Machine Infinite-Bus Power Systems ... 81

3.1 A Single-Machine Infinite-Bus Power System Installed with an SVC Stabilizer .. 81
 3.1.2 Damping Torque Analysis of SVC Stabilizer .. 90

3.2 A Single-Machine Infinite-Bus Power System Installed with a TCSC or TCPS Stabilizer 97
 3.2.1 Extended Heffron—Phillips Model of a Single-Machine Infinite-Bus Power System Installed with a TCSC or TCPS Stabilizer ... 97
 3.2.2 Damping Torque Analysis of TCSC and TCPS Stabilizers .. 103

3.3 An Example Power System Installed with an SVC Stabilizer ... 107
 3.3.1 Linearized Model of Example Power System .. 108
 3.3.2 Design of SVC-Based Stabilizer .. 114
References .. 120

4 Single-Machine Infinite-Bus Power Systems Installed with VSC-Based Stabilizers ... 121

4.1 Damping Torque Analysis of a Shunt VSC-Based Stabilizer Installed in a Single-Machine Infinite-Bus Power System ... 121
 4.1.1 Extended Heffron—Phillips Model of a Single-Machine Infinite-Bus Power System Installed with a Shunt VSC-Based Stabilizer ... 121
 4.1.2 Damping Torque Analysis of Shunt VSC-Based Stabilizer Installed in Single-Machine Infinite-Bus Power System ... 130

4.2 Damping Function of a Stabilizer Added on a Static Synchronous Series Compensator (SSSC) Installed in a Single-Machine Infinite-Bus Power System 133
 4.2.1 Damping Torque Analysis of a SSSC Stabilizer Installed in a Single-Machine Infinite-Bus Power System ... 133
 4.2.2 Design of a SSSC Stabilizer .. 139
4.3 Damping Function of a Unified Power Flow Controller (UPFC) Installed in a Single-Machine Infinite-Bus Power System 143
4.3.1 Mathematical Model of a Single-Machine Infinite-Bus Power System Installed with a UPFC 143
4.3.2 Design of a UPFC Stabilizer Installed in a Single-Machine Infinite-Bus Power System 155
4.4 Examples 163
4.4.1 An Example Single-Machine Infinite-Bus Power System Installed with a BESS Stabilizer 163
4.4.2 An Example Single-Machine Infinite-Bus Power System Installed with a UPFC Stabilizer 172

References 182

5 A Multi-machine Power System Installed with Power System Stabilizers 183
5.1 Mathematical Model of a Multi-machine Power System Installed with Power System Stabilizers 183
5.1.1 A Two-Machine Power System Installed with Power System Stabilizers 183
5.1.2 A Multi-machine Power System Installed with Power System Stabilizers 192
5.2 Modal Analysis and Control of Power System Oscillations in a Multi-machine Power System Installed with Power System Stabilizers 199
5.2.1 Eigensolution for the Analysis of Power System Oscillations 199
5.2.2 Design of Power System Stabilizers in a Multi-machine Power System 204
5.2.3 Fixed Modes Associated with PSS Control 209
5.3 An Example Three-Machine Power System 214
5.3.1 Example Power System and Its Linearized Heffron–Phillips Model 214
5.3.2 Modal Analysis of Example Power System 221

References 234

6 Multi-machine Power System Installed with Thyristor-Based FACTS Stabilizers 235
6.1 Mathematical Model of a Multi-machine Power System Installed with Thyristor-Based FACTS Stabilizers 235
6.1.1 Heffron–Phillips Model 235
6.1.2 General Linearized Model of an N-Machine Power System Installed with Multiple Thyristor-Based FACTS Stabilizers 242
6.2 Analysis and Damping Control of Thyristor-Based FACTS Stabilizers Installed in a Multi-machine Power System 266
6.2.1 Damping Torque Analysis in a Multi-machine Power System .. 266
6.2.2 Selection of Installing Location and Feedback Signal of a Stabilizer in a Multi-machine Power System 272
6.2.3 Selection of Robust Installing Locations and Feedback Signals of a Stabilizer by an Eigensolution-Free Method .. 279
6.2.4 Stabilizer Design in a Multi-machine Power System Considering Robustness and Interaction of Stabilizers 282
6.3 An Example Two-Area Four-Machine Power System 289
6.3.1 Linearized Model .. 289
6.3.2 Selection of Installing Locations of Stabilizers 301
6.4 Example Three-Machine Power System ... 320
6.4.1 Dynamic Interactions Among PSSs Installed in Example Three-Machine Power System 320
6.4.2 Design of Non-negatively Interactive PSSs Installed in Example Power System 324
References ... 328

7 Multi-machine Power Systems Installed with VSC-Based Stabilizers ... 329
7.1 Mathematical Model of a Multi-machine Power System Installed with VSC-Based Stabilizers 329
7.1.1 Mathematical Model of a Multi-machine Power System Installed with a Shunt VSC-Based Stabilizer 329
7.1.2 Mathematical Model of a Multi-machine Power System Installed with a UPFC-Based Stabilizer 339
7.2 Design of a Shunt VSC-Based Stabilizer by Localized Phase Compensation Method to Suppress Inter-area Line Power Oscillations .. 349
7.2.1 Localized Small-Signal Model of a VSC-Based Unit in a Multi-machine Power System 350
7.2.2 Design of VSC-Based Stabilizer by Localized Phase Compensation Method 358
7.2.3 Robustness of an ESS-Based Stabilizer to Variation of Line-Loading Conditions 362
7.3 An Example of Multi-machine Power System with a Grid-Connected FC Power Plan 367
7.3.1 Mathematical Model of a Multi-machine Power System with a Grid-Connected FC Power Plant 367
7.3.2 Design of a Stabilizer Attached to the VSC of FC Power Plant by Localized Phase Compensation Method 375
Analysis and Damping Control of Power System
Low-frequency Oscillations
Wang, H.; Du, W.
2016, XI, 394 p. 149 illus., Hardcover
ISBN: 978-1-4899-7694-9