Contents

1 Introduction

1.1 Power System Low-frequency Oscillations

1.2 Linearized Methods for the Analysis and Damping Control of Power System Oscillations

1.3 FACTS and Grid-Connected ESS

1.4 Controllers to Damp Power System Oscillations

1.5 Design of Damping Controllers to Suppress Power System Oscillations

1.6 Organization of the Book

References

2 A Single-Machine Infinite-Bus Power System Installed with a Power System Stabilizer

2.1 Linearized Model of a Single-Machine Infinite-Bus Power System Installed with a Power System Stabilizer

2.1.1 General Linearized Mathematical Model

2.1.2 Heffron–Phillips Model

2.2 Modal Analysis

2.2.1 Basis of Modal Analysis Theory

2.2.2 Applications of Modal Analysis

2.3 Damping Torque Analysis

2.3.1 Damping Torque and Synchronizing Torque

2.3.2 Damping Torque Analysis and Design of PSS by Phase Compensation

2.4 Examples

2.4.1 Linearized Mathematical Models of an Example Power System

2.4.2 Modal Analysis of Example Power System

2.4.3 Damping Torque Analysis of Example Power System
2.4.4 Equivalence Between the Damping Torque and Modal Analysis. 73

References 79

3 Damping Torque Analysis of Thyristor-Based FACTS Stabilizers Installed in Single-Machine Infinite-Bus Power Systems 81

3.1 A Single-Machine Infinite-Bus Power System Installed with an SVC Stabilizer 81

3.1.2 Damping Torque Analysis of SVC Stabilizer 90

3.2 A Single-Machine Infinite-Bus Power System Installed with a TCSC or TCPS Stabilizer 97

3.2.1 Extended Heffron–Phillips Model of a Single-Machine Infinite-Bus Power System Installed with a TCSC or TCPS Stabilizer 97

3.2.2 Damping Torque Analysis of TCSC and TCPS Stabilizers 103

3.3 An Example Power System Installed with an SVC Stabilizer 107

3.3.1 Linearized Model of Example Power System 108

3.3.2 Design of SVC-Based Stabilizer 114

References 120

4 Single-Machine Infinite-Bus Power Systems Installed with VSC-Based Stabilizers 121

4.1 Damping Torque Analysis of a Shunt VSC-Based Stabilizer Installed in a Single-Machine Infinite-Bus Power System 121

4.1.1 Extended Heffron–Phillips Model of a Single-Machine Infinite-Bus Power System Installed with a Shunt VSC-Based Stabilizer 121

4.1.2 Damping Torque Analysis of Shunt VSC-Based Stabilizer Installed in Single-Machine Infinite-Bus Power System 130

4.2 Damping Function of a Stabilizer Added on a Static Synchronous Series Compensator (SSSC) Installed in a Single-Machine Infinite-Bus Power System 133

4.2.1 Damping Torque Analysis of a SSSC Stabilizer Installed in a Single-Machine Infinite-Bus Power System 133

4.2.2 Design of a SSSC Stabilizer 139
6.2 Analysis and Damping Control of Thyristor-Based FACTS Stabilizers Installed in a Multi-machine Power System 266

6.2.1 Damping Torque Analysis in a Multi-machine Power System 266

6.2.2 Selection of Installing Location and Feedback Signal of a Stabilizer in a Multi-machine Power System 272

6.2.3 Selection of Robust Installing Locations and Feedback Signals of a Stabilizer by an Eigensolution-Free Method 279

6.2.4 Stabilizer Design in a Multi-machine Power System Considering Robustness and Interaction of Stabilizers 282

6.3 An Example Two-Area Four-Machine Power System 289

6.3.1 Linearized Model 289

6.3.2 Selection of Installing Locations of Stabilizers 301

6.4 Example Three-Machine Power System 320

6.4.1 Dynamic Interactions Among PSSs Installed in Example Three-Machine Power System 320

6.4.2 Design of Non-negatively Interactive PSSs Installed in Example Power System 324

References 328

7 Multi-machine Power Systems Installed with VSC-Based Stabilizers 329

7.1 Mathematical Model of a Multi-machine Power System Installed with VSC-Based Stabilizers 329

7.1.1 Mathematical Model of a Multi-machine Power System Installed with a Shunt VSC-Based Stabilizer 329

7.1.2 Mathematical Model of a Multi-machine Power System Installed with a UPFC-Based Stabilizer 339

7.2 Design of a Shunt VSC-Based Stabilizer by Localized Phase Compensation Method to Suppress Inter-area Line Power Oscillations 349

7.2.1 Localized Small-Signal Model of a VSC-Based Unit in a Multi-machine Power System 350

7.2.2 Design of VSC-Based Stabilizer by Localized Phase Compensation Method 358

7.2.3 Robustness of an ESS-Based Stabilizer to Variation of Line-Loading Conditions 362

7.3 An Example of Multi-machine Power System with a Grid-Connected FC Power Plan 367

7.3.1 Mathematical Model of a Multi-machine Power System with a Grid-Connected FC Power Plant 367

7.3.2 Design of a Stabilizer Attached to the VSC of FC Power Plant by Localized Phase Compensation Method 375
7.4 Damping of Multi-mode Oscillations by Multiple Stabilizers Attached to a Single UPFC 380

7.4.1 Coordinated Design of Multiple Stabilizers by Artificial Fish Swarm Algorithm (AFSA) 381

7.4.2 Examples 383

References 391

Index 393
Analysis and Damping Control of Power System
Low-frequency Oscillations
Wang, H.; Du, W.
2016, XI, 394 p. 149 illus., Hardcover
ISBN: 978-1-4899-7694-9