Contents

1 Introduction ... 1
 1.1 Power System Low-frequency Oscillations 1
 1.2 Linearized Methods for the Analysis and Damping Control of Power System Oscillations 3
 1.3 FACTS and Grid-Connected ESS 5
 1.4 Controllers to Damp Power System Oscillations 7
 1.5 Design of Damping Controllers to Suppress Power System Oscillations 10
 1.6 Organization of the Book ... 12
 References ... 13

2 A Single-Machine Infinite-Bus Power System Installed with a Power System Stabilizer 17
 2.1 Linearized Model of a Single-Machine Infinite-Bus Power System Installed with a Power System Stabilizer 17
 2.1.1 General Linearized Mathematical Model 17
 2.1.2 Heffron–Phillips Model 26
 2.2 Modal Analysis .. 32
 2.2.1 Basis of Modal Analysis Theory 32
 2.2.2 Applications of Modal Analysis 37
 2.3 Damping Torque Analysis ... 42
 2.3.1 Damping Torque and Synchronizing Torque 42
 2.3.2 Damping Torque Analysis and Design of PSS by Phase Compensation 47
 2.4 Examples ... 53
 2.4.1 Linearized Mathematical Models of an Example Power System ... 53
 2.4.2 Modal Analysis of Example Power System 59
 2.4.3 Damping Torque Analysis of Example Power System .. 66
Contents

2.4.4 Equivalence Between the Damping Torque and Modal Analysis .. 73

References .. 79

3 Damping Torque Analysis of Thyristor-Based FACTS Stabilizers Installed in Single-Machine Infinite-Bus Power Systems .. 81

3.1 A Single-Machine Infinite-Bus Power System Installed with an SVC Stabilizer 81
 3.1.1 Extended Heffron—Phillips Model
 of a Single-Machine Infinite-Bus Power System Installed with an SVC Stabilizer 81
 3.1.2 Damping Torque Analysis of SVC Stabilizer .. 90

3.2 A Single-Machine Infinite-Bus Power System Installed with a TCSC or TCPS Stabilizer 97
 3.2.1 Extended Heffron—Phillips Model
 of a Single-Machine Infinite-Bus Power System Installed with a TCSC or TCPS Stabilizer .. 97
 3.2.2 Damping Torque Analysis of TCSC and TCPS Stabilizers .. 103

3.3 An Example Power System Installed with an SVC Stabilizer ... 107
 3.3.1 Linearized Model of Example Power System ... 108
 3.3.2 Design of SVC-Based Stabilizer .. 114

References .. 120

4 Single-Machine Infinite-Bus Power Systems Installed with VSC-Based Stabilizers 121

4.1 Damping Torque Analysis of a Shunt VSC-Based Stabilizer Installed in a Single-Machine Infinite-Bus Power System ... 121
 4.1.1 Extended Heffron—Phillips Model of a Single-Machine Infinite-Bus Power System Installed with a Shunt VSC-Based Stabilizer ... 121
 4.1.2 Damping Torque Analysis of Shunt VSC-Based Stabilizer Installed in Single-Machine Infinite-Bus Power System ... 130

4.2 Damping Function of a Stabilizer Added on a Static Synchronous Series Compensator (SSSC) Installed in a Single-Machine Infinite-Bus Power System 133
 4.2.1 Damping Torque Analysis of a SSSC Stabilizer Installed in a Single-Machine Infinite-Bus Power System ... 133
 4.2.2 Design of a SSSC Stabilizer ... 139
4.3 Damping Function of a Unified Power Flow Controller (UPFC)
 Installed in a Single-Machine Infinite-Bus Power System 143
 4.3.1 Mathematical Model of a Single-Machine
 Infinite-Bus Power System Installed
 with a UPFC .. 143
 4.3.2 Design of a UPFC Stabilizer Installed
 in a Single-Machine Infinite-Bus Power System 155
4.4 Examples .. 163
 4.4.1 An Example Single-Machine Infinite-Bus Power System
 Installed with a BESS Stabilizer 163
 4.4.2 An Example Single-Machine Infinite-Bus Power System
 Installed with a UPFC Stabilizer 172
References .. 182

5 A Multi-machine Power System Installed with Power System
 Stabilizers .. 183
 5.1 Mathematical Model of a Multi-machine Power System Installed
 with Power System Stabilizers 183
 5.1.1 A Two-Machine Power System Installed
 with Power System Stabilizers 183
 5.1.2 A Multi-machine Power System Installed
 with Power System Stabilizers 192
 5.2 Modal Analysis and Control of Power System Oscillations
 in a Multi-machine Power System Installed with Power System
 Stabilizers .. 199
 5.2.1 Eigensolution for the Analysis of Power System
 Oscillations ... 199
 5.2.2 Design of Power System Stabilizers
 in a Multi-machine Power System 204
 5.2.3 Fixed Modes Associated with PSS Control 209
 5.3 An Example Three-Machine Power System 214
 5.3.1 Example Power System and Its Linearized
 Heffron–Phillips Model 214
 5.3.2 Modal Analysis of Example Power System 221
References .. 234

6 Multi-machine Power System Installed with Thyristor-Based
 FACTS Stabilizers .. 235
 6.1 Mathematical Model of a Multi-machine Power System Installed
 with Thyristor-Based FACTS Stabilizers 235
 6.1.1 Heffron–Phillips Model 235
 6.1.2 General Linearized Model of an N-Machine
 Power System Installed with Multiple
 Thyristor-Based FACTS Stabilizers 242
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.2</td>
<td>Analysis and Damping Control of Thyristor-Based FACTS Stabilizers</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Installed in a Multi-machine Power System</td>
<td>266</td>
</tr>
<tr>
<td>6.2.1</td>
<td>Damping Torque Analysis in a Multi-machine Power System</td>
<td>266</td>
</tr>
<tr>
<td>6.2.2</td>
<td>Selection of Installing Location and Feedback Signal of a Stabilizer</td>
<td>272</td>
</tr>
<tr>
<td>6.2.3</td>
<td>Selection of Robust Installing Locations and Feedback Signals of a</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Stabilizer by an Eigensolution-Free Method</td>
<td>279</td>
</tr>
<tr>
<td>6.2.4</td>
<td>Stabilizer Design in a Multi-machine Power System</td>
<td>282</td>
</tr>
<tr>
<td>6.3</td>
<td>An Example Two-Area Four-Machine Power System</td>
<td>289</td>
</tr>
<tr>
<td>6.3.1</td>
<td>Linearized Model</td>
<td>289</td>
</tr>
<tr>
<td>6.3.2</td>
<td>Selection of Installing Locations of Stabilizers</td>
<td>301</td>
</tr>
<tr>
<td>6.4</td>
<td>Example Three-Machine Power System</td>
<td>320</td>
</tr>
<tr>
<td>6.4.1</td>
<td>Dynamic Interactions Among PSSs Installed in Example Three-Machine</td>
<td>320</td>
</tr>
<tr>
<td></td>
<td>Power System</td>
<td>324</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Multi-machine Power Systems Installed with VSC-Based Stabilizers</td>
<td>329</td>
</tr>
<tr>
<td>7.1</td>
<td>Mathematical Model of a Multi-machine Power System Installed with</td>
<td>329</td>
</tr>
<tr>
<td></td>
<td>VSC-Based Stabilizers</td>
<td>329</td>
</tr>
<tr>
<td>7.1.1</td>
<td>Mathematical Model of a Multi-machine Power System</td>
<td>329</td>
</tr>
<tr>
<td></td>
<td>Installed with a Shunt VSC-Based Stabilizer</td>
<td>329</td>
</tr>
<tr>
<td>7.1.2</td>
<td>Mathematical Model of a Multi-machine Power System</td>
<td>339</td>
</tr>
<tr>
<td></td>
<td>Installed with a UPFC-Based Stabilizer</td>
<td>339</td>
</tr>
<tr>
<td>7.2</td>
<td>Design of a Shunt VSC-Based Stabilizer by Localized Phase Compensation Method to Suppress Inter-area Line Power Oscillations.</td>
<td>349</td>
</tr>
<tr>
<td>7.2.1</td>
<td>Localized Small-Signal Model of a VSC-Based Unit in a Multi-machine</td>
<td>350</td>
</tr>
<tr>
<td></td>
<td>Power System</td>
<td>350</td>
</tr>
<tr>
<td>7.2.2</td>
<td>Design of VSC-Based Stabilizer by Localized Phase Compensation Method</td>
<td>358</td>
</tr>
<tr>
<td>7.2.3</td>
<td>Robustness of an ESS-Based Stabilizer to Variation of Line-Loading</td>
<td>362</td>
</tr>
<tr>
<td></td>
<td>Conditions</td>
<td>362</td>
</tr>
<tr>
<td>7.3</td>
<td>An Example of Multi-machine Power System with a Grid-Connected FC Power Plant</td>
<td>367</td>
</tr>
<tr>
<td>7.3.1</td>
<td>Mathematical Model of a Multi-machine Power System with a Grid-Connected FC Power Plant</td>
<td>367</td>
</tr>
<tr>
<td>7.3.2</td>
<td>Design of a Stabilizer Attached to the VSC of FC Power Plant by</td>
<td>375</td>
</tr>
<tr>
<td></td>
<td>Localized Phase Compensation Method</td>
<td>375</td>
</tr>
</tbody>
</table>
Analysis and Damping Control of Power System
Low-frequency Oscillations
Wang, H.; Du, W.
2016, XI, 394 p. 149 illus., Hardcover
ISBN: 978-1-4899-7694-9