Preface

This book is based on the Association for the Advancement of Artificial Intelligence (AAAI) Symposium on “The Intersection of Robust Intelligence (RI) and Trust in Autonomous Systems”; the symposium was held at Stanford March 24–26, 2014. The title of this book reflects the theme of the symposium. Our goal for this book is to further address the current state of the art in autonomy at the intersection of RI and trust and to more fully examine the existing research gaps that must be closed to enable the effective integration of autonomous and human systems. This research is particularly necessary for the next generation of systems, which must scale to teams of autonomous platforms to better support their human operators and decision makers.

The book explores the intersection of RI and trust across multiple contexts and among arbitrary combinations of humans, machines, and robots. To help readers better understand the relationships between artificial intelligence (AI) and RI in a way that promotes trust among autonomous systems and human users, this edited volume presents a selection of the underlying theories, computational models, experimental methods, and possible field applications. While other books deal with these topics individually, this book is unique in that it unifies the fields of RI and trust and frames them in the broader context of effective integration for human-autonomous systems.

The volume begins by describing the current state of the art for research in RI and trust presented at Stanford University in the Spring of 2014 (copies of the technical articles are available from AAAI at http://www.aaai.org/Library/Symposia/Spring/ss14-04.php; a link to the presentation materials and photographs of participants is at https://sites.google.com/site/aaairobustintelligence/).

After the introduction, chapter contributors elaborate on key research topics at the heart of effective human-systems integration. These include machine learning, Big Data, workload management, human-computer interfaces, team integration and performance, advanced analytics, behavior modeling, training, and test and evaluation, the latter known as V&V (i.e., verification and validation).

The contributions to this volume are written by world-class leaders from across the field of autonomous systems research, ranging from industry to academia and to
government. Given the diversity of the research in this book, we strove to thoroughly examine the challenges and trends of systems that exhibit RI; the fundamental implications of RI in developing trusted relationships among humans, machines, and robots with present and future autonomous systems; and the effective human systems integration that must result for trust to be sustained.

A brief summary is presented below of the AAAI Symposium in the Spring of 2014.

AAAII-2014 Spring Symposium Organizers

Jennifer Burke, Boeing: jennifer.l.burke2@boeing.com
Alan Wagner, Georgia Tech Research Institute: Alan.Wagner@gtri.gatech.edu
Donald Sofge, Naval Research Laboratory: don.sofge@nrl.navy.mil
William F. Lawless, Paine College: wlawless@paine.edu

AAAII-2014 Spring Symposium: Keynote Speakers

- Suzanne Barber, barber@mail.utexas.edu, AT&T Foundation Endowed Professor in Engineering, Department of Electrical and Computer Engineering, Cockrell School of Engineering, U Texas
- Julie L. Marble, julie.marble@navy.mil, Program Officer: Hybrid human computer systems at Office of Naval Research, Washington, DC
- Ranjeev Mittu, ranjeev.mittu@nrl.navy.mil, Branch Head, Information Management & Decision Architectures Branch, Information Technology Division, US Naval Research Laboratory, Washington, DC
- Hadas Kress-Gazit, hadaskg@cornell.edu, Cornell University; High-Level Verifiable Robotics
- Satyandra K. Gupta, skgupta@umd.edu, Director, Maryland Robotics Center, University of Maryland
- Dave Ferguson, daveferguson@google.com, Google’s Self-Driving Car project, San Francisco
- Mo Jamshidi, mo.jamshidi@usta.edu, University of Texas at San Antonio, Lutcher Brown Endowed Chair and Professor, Computer and Electrical Engineering
- Dirk Helbing, dirk.helbing@gess.ethz.ch, http://www.futurict.eu; ETH Zurich
Symposium Program Committee

- Julie L. Marble, julie.Marble@jhuapl.edu, cybersecurity, Johns Hopkins Advanced Physics Lab, MD
- Ranjeev Mittu, ranjeev.mittu@nrl.navy.mil, Branch Head, Information Management & Decision Architectures Branch, Information Technology Division, U.S. Naval Research Laboratory, Washington, DC
- David Atkinson, datkinson@ihmc.us, Senior Research Scientist, Institute of Human-Machine Cognition (IHMC)
- Jeffrey Bradshaw, jbradshaw@ihmc.us; Senior Research Scientist, Institute of Human-Machine Cognition (IHMC)
- Lashon B. Booker, booker@mitre.org, The MITRE Corporation
- Paul Hyden, paul.hyden@nrl.navy.mil, Naval Research Laboratory
- Holly Yanco, holly@cs.uml.edu, University of Massachusetts Lowell
- Fei Gao, feigao@MIT.EDU.MIT
- Robert Hoffman, rhoffman@ihmc.us, Senior Research Scientist, Institute of Human-Machine Cognition (IHMC)
- Florian Jentsch, florian.Jentsch@ucf.edu, Department of Psychology and Institute for Simulation & Training, Director, Team Performance Laboratory, University of Central Florida
- Howell, Chuck, howell@mitre.org, Chief Engineer, Intelligence Portfolio, National Security Center, The MITRE Corporation
- Paul Robinette, probinette3@gatech.edu, Graduate Research Assistant, Georgia Institute of Technology
- Munjal Desai, munjaldesai@google.com
- Geert-Jan Kruijff, gj@dfki.de, Senior Researcher/Project Leader, Language Technology Lab, DFKI GmbH, Saarbruecken, Germany

This AAAI symposium sought to address these topics and questions:

- How can robust intelligence be instantiated?
- What is RI for an individual agent? A team? Firm? System?
- What is a robust team?
- What is the association between RI and autonomy?
- What metrics exist for robust intelligence, trust, or autonomy between individuals or groups, and how well do these translate to interactions between humans and autonomous machines?
- What are the connotations of “trust” in various settings and contexts?
- How do concepts of trust between humans collaborating on a task differ from human-human, human-machine, machine-human, and machine-machine trust relationships?
- What metrics for trust currently exist for evaluating machines (possibly including such factors as reliability, repeatability, intent, and susceptibility to catastrophic failure), and how may these metrics be used to moderate behavior in collaborative teams including both humans and autonomous machines?
• How do trust relationships affect the social dynamics of human teams, and are these effects quantifiable?
• What validation procedures could be used to engender trust between a human and an autonomous machine?
• What algorithms or techniques are available to allow machines to develop trust in a human operator or another autonomous machine?
• How valid are the present conceptual models of human networks? Mathematical models? Computational models?
• How valid are the present conceptual models of autonomy in networks? Mathematical models? Computational models?

Papers at the symposium specified the relevance of their topic to AI or proposed a method involving AI to help address their particular issue. Potential topics included (but were not limited to) the following:

Robust Intelligence (RI) topics:
• Computational, mathematical, conceptual models of robust intelligence
• Metrics of robust intelligence
• Is a model of thermodynamics possible for RI (i.e., using physical thermodynamic principles, can intelligent behavior be addressed in reaction to thermodynamic pressure from the environment?)?

Trust topics:
• Computational, mathematical, conceptual models of trust in autonomous systems
• Human requirements for trust and trust in machines
• Machine requirements for trust and trust in humans
• Methods for engendering and measuring trust among humans and machines
• Metrics for deception among humans and machines
• Other computational and heuristic models of trust relationships, and related behaviors, in teams of humans and machines

Autonomy topics:
• Models of individual, group, and firm autonomous system behaviors
• Mathematical models of multitasking in a team (e.g., entropy levels overall and by individual agents, energy levels overall and by individual agents)

Network topics:
• Constructing, measuring, and assessing networks (e.g., the density of chat networks among human operators controlling multi-unmanned aerial vehicles)
• For networks, specify whether the application is for humans, machines, robots, or a combination, e.g., the density of inter-robot communications
After the symposium was completed, the book and the symposium took on separate lives. The following individuals were responsible for the proposal submitted to Springer after the symposium, for the divergence between the topics of the two, and for editing the book that has resulted.

Washington, DC, USA Ranjeev Mittu
Washington, DC, USA Donald Sofge
Atlanta, GA, USA Alan Wagner
Augusta, GA, USA W.F. Lawless
Robust Intelligence and Trust in Autonomous Systems
Mittu, R.; Sofge, D.; Wagner, A.; Lawless, W.F. (Eds.)
2016, XII, 270 p. 89 illus., 64 illus. in color., Hardcover
ISBN: 978-1-4899-7666-6