Contents

1 Introduction ... 1
 1.1 Historical Perspective 1
 1.2 DNA Basics ... 3
 1.2.1 Organization of Chromosomes 3
 1.2.2 Organization of DNA 4
 1.2.3 DNA and Protein 5
 1.3 Types of Genetic Variation 6
 1.3.1 Single-Nucleotide Variants and Polymorphisms 6
 1.3.2 Insertions/Deletions 11
 1.3.3 Larger Structural Variants 11
 1.3.4 Exonic Variation and Disease 12
 1.3.5 Non-exonic SNPs and Disease 12
 1.3.6 SNP Haplotypes 13
 1.3.7 Microsatellites 13
 1.3.8 Mitochondrial Variation 14
 1.4 Overview of Genotyping Methods 14
 1.4.1 SNP Calling 16
 1.5 Overview of GWAS Genotype Arrays 18
 1.6 Software and Data Resources 18
 1.7 Web Resources .. 19
 1.7.1 Basic Genomics 19
 1.7.2 GWAS Associations 20
 1.7.3 Annotation 20
 1.8 Hardware and Operating Systems 22
 1.9 Data Example ... 23
 1.9.1 Save Your Work 24
 References ... 27

2 Topics in Quantitative Genetics 31
 2.1 Distribution of a Single Diallelic Variant in a Randomly Mixing Population 32
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.3.1 Test of Hypothesis regarding Genotype</td>
<td>85</td>
</tr>
<tr>
<td>Effects Testing Using Logistic Regression in Case–Control Analysis</td>
<td></td>
</tr>
<tr>
<td>3.3.2 Interpreting Regression Equation Coefficients</td>
<td>88</td>
</tr>
<tr>
<td>3.4 Summary of Maximum Likelihood Estimation, Wald</td>
<td></td>
</tr>
<tr>
<td>Tests, Likelihood Ratio Tests, Score Tests, and Sufficient Statistics</td>
<td>90</td>
</tr>
<tr>
<td>3.4.1 Properties of Log Likelihood Functions</td>
<td>91</td>
</tr>
<tr>
<td>3.4.2 Score Tests</td>
<td>93</td>
</tr>
<tr>
<td>3.4.3 Likelihood Ratio Tests</td>
<td>94</td>
</tr>
<tr>
<td>3.4.4 Wald Tests</td>
<td>95</td>
</tr>
<tr>
<td>3.4.5 Fisher’s Scoring Procedure for Finding the MLE</td>
<td>95</td>
</tr>
<tr>
<td>3.4.6 Scores and Information for Normal</td>
<td>96</td>
</tr>
<tr>
<td>and Binary Regression</td>
<td></td>
</tr>
<tr>
<td>3.4.7 Score Tests of $\beta = 0$ for Linear and Logistic Models</td>
<td>98</td>
</tr>
<tr>
<td>3.4.8 Matrix Formulae for Estimators in OLS Regression</td>
<td>100</td>
</tr>
<tr>
<td>3.5 Covariates, Interactions, and Confounding</td>
<td>102</td>
</tr>
<tr>
<td>3.6 Conditional Logistic Regression</td>
<td>104</td>
</tr>
<tr>
<td>3.6.1 Breaking the Matching in Logistic Regression of Matched Data</td>
<td>105</td>
</tr>
<tr>
<td>3.6.2 Parent Affected-Offspring Design</td>
<td>109</td>
</tr>
<tr>
<td>3.7 Case-Only Analyses</td>
<td>111</td>
</tr>
<tr>
<td>3.7.1 Case-Only Analyses of Disease Subtype</td>
<td>111</td>
</tr>
<tr>
<td>3.7.2 Case-Only Analysis of Gene \times Environment and Gene \times Gene Interactions</td>
<td>111</td>
</tr>
<tr>
<td>3.8 Non-independent Phenotypes</td>
<td>114</td>
</tr>
<tr>
<td>3.8.1 OLS Estimation When Phenotypes Are Correlated</td>
<td>114</td>
</tr>
<tr>
<td>3.9 Needs of a GWAS Analysis</td>
<td>115</td>
</tr>
<tr>
<td>3.9.1 Hardware Requirements for GWAS</td>
<td>116</td>
</tr>
<tr>
<td>3.9.2 Software Solutions</td>
<td>116</td>
</tr>
<tr>
<td>3.10 The Multiple Comparisons Problem</td>
<td>118</td>
</tr>
<tr>
<td>3.11 Behavior of the Bonferroni Correction with Non-Independent Tests</td>
<td>119</td>
</tr>
<tr>
<td>3.12 Reliability of Small p-Values</td>
<td>121</td>
</tr>
<tr>
<td>3.12.1 Test of a Single Binomial Proportion</td>
<td>122</td>
</tr>
<tr>
<td>3.12.2 Test of a Difference in Binomial Proportions</td>
<td>124</td>
</tr>
<tr>
<td>3.13 Chapter Summary</td>
<td>125</td>
</tr>
<tr>
<td>Appendix</td>
<td>130</td>
</tr>
<tr>
<td>References</td>
<td>131</td>
</tr>
</tbody>
</table>

4.1 Effects of Hidden Population Structure on the Behavior of Statistical Tests for Association 136

4.1.1 Effects on Inference Induced by Correlated Phenotypes .. 136

4.1.2 Influences of Latent Variables .. 140

4.1.3 Hidden Structure as a Latent Variable .. 140

4.1.4 Polygenes, Latent Structure, Hidden Relatedness, and Confounding .. 141

4.1.5 Hidden Non-mixing Strata .. 142

4.1.6 Admixture .. 147

4.1.7 Polygenes and Cryptic Relatedness .. 150

4.2 Correcting for the Effects of Hidden Structure and Relatedness .. 154

4.2.1 Genomic Control .. 154

4.2.2 Regression-based Adjustment for Leading Principal Components .. 156

4.2.3 Implementation of Principal Components Adjustment Methods .. 157

4.2.4 Random Effects Models .. 162

4.2.5 Retrospective Methods .. 166

4.3 Comparison of Correction Methods by Simulation .. 170

4.3.1 Comparison of the Mixed Model and Retrospective Approach for Binary (case–control) Outcomes .. 171

4.3.2 Conclusions .. 172

4.4 Behavior of the Genomic Control Parameter as Sample Size increases .. 173

4.5 Removing Related Individuals as Part of Quality Control, Is It Needed? .. 176

4.6 Chapter Summary .. 177

Data and Software Exercises .. 179

References .. 179

5 Haplotype Imputation for Association Analysis 183

5.1 The Role of Haplotypes in Association Testing 184

5.2 Haplotypes, LD Blocks, and Haplotype Uncertainty 185

5.3 Haplotype Frequency Estimation and Imputation 185

5.3.1 Small Numbers of SNPs .. 185

5.3.2 Haplotype Uncertainty .. 186

5.4 Haplotype Frequency Estimation for Larger Numbers of SNPs .. 190

5.4.1 Partition-Ligation EM Algorithm .. 190

5.4.2 Phasing Large Numbers of SNPs .. 190
5.5 Regression Analysis Using Haplotypes as Explanatory Variables 191
5.5.1 Expectation Substitution 191
5.5.2 Fitting Dominant, Recessive, or Two Degrees of Freedom Models for the Effect of Haplotypes 193
5.6 Dealing with Uncertainty in Haplotype Estimation in Association Testing 195
5.6.1 Full Likelihood Estimation of Risk Parameters and Haplotype Frequencies 195
5.6.2 Ascertainment in Case–Control Studies 197
5.6.3 Example: Expectation-Substitution Method 198
5.7 Haplotype Analysis Genome-Wide 201
5.7.1 Studies of Homogeneous Non-admixed Populations .. 201
5.7.2 The Four-Gamete Rule for Fast Block Definition 202
5.7.3 Multiple Comparisons in Haplotype Analysis 204
5.8 Multiple Populations 205
5.9 Chapter Summary .. 207
References .. 209

6 SNP Imputation for Association Studies 213
6.1 The Role of Imputed SNPs in Association Testing 214
6.2 EM Algorithm and SNP Imputation 214
6.3 Phasing Large Numbers of SNPs for the Reference Panel 217
6.4 Brief Introduction to Hidden Markov Models 217
6.4.1 The Baum–Welch Algorithm 220
6.5 Large-Scale Imputation Using HMMs 222
6.6 Using an HMM to Impute Missing Genotype Data when Both the Reference Panel and Study Genotypes Are Phased 223
6.7 Using an HMM to Phase Reference or Main Study Genotypes 229
6.7.1 Initializing and Updating the Current List of Haplotypes 232
6.8 Practical Issues in Large-Scale SNP Imputation 235
6.8.1 Assessing Imputation Accuracy 236
6.8.2 Imputing Rare SNPs 237
6.8.3 Use of Cosmopolitan Reference Panels 238
6.9 Estimating Relative Risks for Imputed SNPs 239
6.9.1 Expectation Substitution 239
6.10 Chapter Summary .. 239
6.10.1 Links .. 241
References .. 241
7 Design of Large-Scale Genetic Association Studies, Sample Size, and Power 243
 7.1 Design Considerations 243
 7.2 Sample Size and Power for Studies of Unrelated Subjects 244
 7.2.1 Power for Chi-Square Tests 244
 7.2.2 Calculation of Non-centrality Parameters for Chi-Square Tests in Generalized Linear Models .. 248
 7.3 QUANTO .. 255
 7.3.1 Use of QUANTO to Compute Power to Detect Main Effects of Genetic Variants in Case–Control Studies 258
 7.4 Alternative Designs ... 258
 7.4.1 Sibling Controls ... 260
 7.4.2 Power for Interactions 261
 7.4.3 Parent-Affected-Offspring Trios 262
 7.4.4 Power for Case-Only Analysis of Interactions 262
 7.5 Control for Multiple Comparisons 264
 7.5.1 Single Marker Associations 264
 7.5.2 More Complex Marker Associations 264
 7.5.3 Reliability of Very Small p-Values 266
 7.6 Two-Staged Genotyping Designs 266
 7.6.1 Measured SNP Association Tests 267
 7.6.2 Optimal Two-Stage Case–Control Designs 270
 7.7 Control of Population Stratification: Effects on Study Power 272
 7.7.1 Genomic Inflation and Study Power 273
 7.7.2 Correction for Admixture and Hidden Structure by Principal Components .. 274
 7.7.3 A Retrospective Analysis of Study Power 275
 7.8 Power of Multi-SNP Conditional Tests 280
 7.9 Chapter Summary ... 280
References .. 283

8 Post-GWAS Analyses .. 285
 8.1 Meta-analysis ... 285
 8.2 Meta-analysis of Linear or Logistic Regression Estimates 287
 8.2.1 Random Effects Models 290
 8.3 Meta-analysis for the GWAS Setting 291
 8.3.1 Meta-analysis and Imputation 292
 8.4 Efficiency of Meta-analysis Versus Pooled Analysis 293
 8.5 Sources of Heterogeneity in Meta-analysis of GWAS Data 295
 8.5.1 LD Differences .. 295
 8.5.2 Exposure Differences 296
 8.5.3 Gene × Gene Interactions 296
8.6 Meta-analysis Based on Effect sizes, Z-scores, and \(P \)-Values ... 297
 8.6.1 Z-Score Analysis 297
 8.6.2 Fisher’s Method of Combining \(P \)-Values 298
 8.6.3 Meta-analysis of Score Tests 299
8.7 Multiethnic Analyses 299
8.8 Fine Mapping of Single-SNP Associations:
 Conditional Analyses .. 301
8.9 Fine Mapping in Admixed Populations 303
 8.9.1 The Role of Local Ancestry Adjustment 304
8.10 Polygenes and Heritability 305
 8.10.1 Fraction of Familial Risk Explained
 by a Polygene Under a Multiplicative Model 305
 8.10.2 Synergies Between Polygenes
 and Environmental Variables 306
8.11 GWAS Heritability Analysis 306
 8.11.1 Heritability Estimation in the Presence
 of Population Stratification 308
8.12 Analysis of Rare Variants 309
8.13 Contribution of Rare SNPs to Phenotypic Variance
 and Heritability Under a Polygenic (Additive) Model . 310
8.14 Moderately Rare Single-SNP Analysis 312
8.15 Burden and Pathway Analysis 314
 8.15.1 A Weighted Sum Statistic 315
 8.15.2 Omnibus Tests, Variance Components,
 and Kernel Machines 316
8.16 Final Remarks ... 319
8.17 Chapter Summary ... 321
References .. 324

Index .. 329
Design, Analysis, and Interpretation of Genome-Wide Association Scans
Stram, D.O.
2014, XV, 334 p. 39 illus., Hardcover
ISBN: 978-1-4614-9442-3