Contents

1 Introduction .. 1
 1.1 Surface Response Due to Concentrated Forces ... 2
 1.2 Dynamic Response of Foundations ... 4
 1.2.1 Assumed Contact Stress Distributions ... 4
 1.2.2 Mixed Boundary Value Problems ... 5
 1.2.3 Lumped Parameter Models ... 7
 1.2.4 Computational Methods ... 8
 1.3 Coupled Vibrations of Foundations .. 9
 1.4 Interactions Between Foundations ... 11
 1.5 Experimental Studies ... 12
 1.6 Layered Elastic Medium ... 13

2 Governing Equations .. 15
 2.1 Derivation of Equations of Motion ... 16
 2.2 Stress–Strain Relation ... 16
 2.3 Strains in Terms of Displacements ... 17
 2.4 Elastic Rotations in Terms of Displacements .. 19
 2.5 Equations of Motion .. 19
 2.6 Displacements in Terms of Dilatation and Rotation Components 21
 2.7 Stresses in Terms of Dilatation and Rotation Components 22
 2.8 Fourier Transformation of Equations of Motion, Boundary Stresses, and Displacements .. 24
 2.9 General Solution of Transformed Equations of Motion 25

3 Surface Response of an Elastic Half-Space
 Due to a Vertical Harmonic Point Force ... 29
 3.1 Boundary Conditions of the Problem .. 30
 3.2 Integral Representations of Displacements ... 31
 3.3 Real Root of Rayleigh’s Function .. 34
 3.4 System of Free Waves ... 35
 3.5 Evaluation of Displacements .. 36
3.6 Numerical Integration for Displacements 40
3.7 Evaluation of A_1 .. 40
3.8 Evaluation of A_2 .. 41
3.9 Evaluation of A_3 .. 41
3.10 Results and Discussion ... 42

4 Response of the Surface of an Elastic Half-Space Due
to a Horizontal Harmonic Point Force 55
4.1 Boundary Conditions for the Problem 56
4.2 Integral Representations of Displacements 57
4.3 Rayleigh Wave Displacements ... 60
4.4 Evaluation of Displacements ... 60
4.5 Numerical Integration of Displacements 69
4.6 Results and Discussion ... 70

5 Dynamics of a Rigid Foundation on the Surface
of an Elastic Half-Space ... 85
5.1 Introduction ... 86
5.2 Method of Analysis for a Massless Base 89
 5.2.1 Comparison ... 93
5.3 Dynamic Response of a Massive Foundation 96
5.4 Experimental Verification ... 102
5.5 Discussion and Conclusion ... 102
5.6 Simultaneous Horizontal and Rocking Vibration
 of Rectangular Footing ... 104
 5.6.1 Equation of Motion ... 105
 5.6.2 Results and Discussions ... 107
5.7 Response of Two Massive Bases on an Elastic
 Half-Space Medium ... 110
 5.7.1 Introduction ... 110
 5.7.2 Displacement of a Massless Passive Footing
 Due to Oscillations of an Active Massless Footing 115
 5.7.3 Interactions Between Two Massive Bases 118
5.7.4 Results and Discussion ... 118

6 Experiments on Elastic Half-Space Medium 121
6.1 Introduction .. 121
6.2 Determination of Shear Modulus for the Medium 123
6.3 Determination of Dynamic Properties of the Medium 126
6.4 Laboratory Half-Space Medium ... 127
 6.4.1 Apparatus ... 128
 6.4.2 Static Properties of the Medium 129
 6.4.3 Dynamic Properties of the Medium 131
6.5 Experimental Vibration Response of Massive
 Rectangular and Circular Bases .. 134
6.6 Experimental Response of Coupled Horizontal and Rocking Vibration ... 136
6.7 Measurement of Dynamic Properties of Elastic Half-Space Medium Using Square Footings 138
 6.7.1 Mathematical Model .. 138
 6.7.2 Experimental Results 139

7 Dynamic Response of a Rigid Foundation Subjected to a Distance Blast ... 143
 7.1 Introduction .. 144
 7.2 Surface Response Due to Concentrated Forces 144
 7.3 Governing Equation of Motion 146
 7.4 Results and Discussions 149
 7.5 Conclusion ... 151

8 Identification of Vertical Exciting Force on the Surface of an Elastic Half-Space Using Sensor Fusion 153
 8.1 Introduction .. 154
 8.2 Numerical Techniques 155
 8.3 Determination of the Source Location 155
 8.4 Conclusions .. 158

9 Surface Vibration of a Multilayered Elastic Medium Due to Harmonic Concentrated Force 159
 9.1 Introduction .. 160
 9.2 Equation of Motion .. 161
 9.2.1 Displacement Equations 164
 9.2.2 Stress Equations 165
 9.2.3 Shear Stress Equations 166
 9.2.4 Solutions of the Governing Equations 167
 9.2.5 General Solutions of Transformed Equations of Motion 167
 9.2.6 Harmonic Response of the Surface Due to a Concentrated Vertical Load 179
 9.3 Results and Discussions 181
 9.3.1 Vertical and Horizontal Surface Load on the One-Layered Mediums 181
 9.3.2 Vertical and Horizontal Surface Load on the Two-Layered Mediums 183
 9.4 Conclusion .. 185

10 Three-Dimensional Wave Propagations in Porous Half-Space Subjected to Multiple Energy Excitations 187
 10.1 Introduction .. 189
 10.2 Porous Materials and Porous Media in Petroleum Industry 194
 10.2.1 Porous Materials 194
 10.2.2 Porous Media and Enhanced Oil Recovery in Petroleum Industry 201
10.3 Development of General Governing Equations in Relative Displacements for Wave Propagations in Porous Media ... 203
10.3.1 Biot’s Theory .. 204

10.4 Fractal Dimension Development of 3D Wave Model for Wave Propagations in Half-Space Porous Media 211
10.4.1 Governing Equation Development 213
10.4.2 Establishment of Wave Propagation Model with Multiple Energy Sources ... 216
10.4.3 Numerical Study ... 220

10.5 Wave Field in Porous Half-Space Media Saturated with Newtonian Viscous Fluid .. 230
10.5.1 Development of Governing Wave Equations 230
10.5.2 Wave Propagation and Displacement Field Model with Viscosity ... 233
10.5.3 Effects of Viscosity on Wave Dispersion in Porous Half-Space Under Multiple Energy Sources ... 236

10.6 Wave Field of a Porous Half-Space Medium Saturated with Two Immiscible Fluids Under the Excitations of Multiple Wave Sources .. 249
10.6.1 Volume Averaging Method 250
10.6.2 Governing Equation Development 250
10.6.3 Multisource Model ... 254
10.6.4 Numerical Analyses .. 256

Appendix A: Double Complex Fourier Transform 267
A.1 Fourier Transform of Function 267
A.1.1 Fourier Transform of Derivatives of Functions 268
A.1.2 Inverse of Fourier Transform 268
A.1.3 Fourier Transform of the Dirac Delta Function 269

Appendix B: Evaluation of Certain Infinite Integrals 271

Appendix C: Numerical Evaluation of Certain Integrals 277
C.1 The Numerical Evaluation of Cauchy Principal Values of the Integral ... 277
C.2 Integral of the Form $\int_0^b (b - x)^\alpha (x - a)^\beta f(x)dx$.. 278

Appendix D: Trigonometric Formulae 281

References ... 287

Index ... 299
Wave Propagation in Solid and Porous Half-Space Media
Hamidzadeh, H.R.; Dai, L.; Jazar, R.N.
2014, XXV, 304 p. 129 illus., 87 illus. in color., Hardcover