After that, it was down to attitude.
—**Ian Rankin,** *Black & Blue.*

The purpose of this book is to provide a self-contained entry into practical and computational Bayesian statistics using generic examples from the most common models for a class duration of about seven blocks that roughly correspond to 13–15 weeks of teaching (with three hours of lectures per week), depending on the intended level and the prerequisites imposed on the students. (That estimate does not include practice—i.e., R programming labs, writing data reports—since those may have a variable duration, also depending on the students’ involvement and their programming abilities.) The emphasis on practice is a strong commitment of this book in that its primary audience consists of graduate students who need to use (Bayesian) statistics as a tool to analyze their experiments and/or datasets. The book should also appeal to scientists in all fields who want to engage into Bayesian statistics, given the versatility of the Bayesian tools. Bayesian essentials can also be used for a more classical statistics audience when aimed at teaching a quick entry to Bayesian statistics at the end of an undergraduate program, for instance. (Obviously, it can supplement another textbook on data analysis at the graduate level.)

This book is an extensive revision of our previous book, *Bayesian Core,* which appeared in 2007, aiming at the same goals. (Glancing at this earlier version will show the filiation to most readers.) However, after publishing *Bayesian Core* and teaching from it to different audiences, we soon realized that the level of mathematics therein was actually more involved than the one expected by those audiences. Students were also asking for more advice and
more R code than what was then available. We thus decided upon a major revision, producing a manual that cut the mathematics and expanded the R code, changing as well some chapters and replacing some datasets. We had at first even larger ambitions in terms of contents, but had eventually to sacrifice new chapters for the sake of completing the book before we came to blows! To stress further the changes from the 2007 version, we also decided on a new title, *Bayesian Essentials*, that was actually suggested by Andrew Gelman during a visit to Paris.

The current format of the book is one of a quick coverage of the topics, always backed by a motivated problem and a corresponding dataset (available in the associated R package, *bayess*), and a detailed resolution of the inference procedures pertaining to this problem, always including commented R programs or relevant parts of R programs. Special attention is paid to the derivation of prior distributions, and operational reference solutions are proposed for each model under study. Additional cases are proposed as exercises. The spirit is not unrelated to that of Nolan and Speed (2000), with more emphasis on the methodological backgrounds. While the datasets are inspired by real cases, we also cut on their description and the motivations for their analysis. The current format thus serves as a unique textbook for a service course for scientists aimed at analyzing data the Bayesian way or as an introductory course on Bayesian statistics.

Note that we have not included any BUGS-oriented hierarchical analysis in this edition. This choice is deliberate: We have instead focussed on the Bayesian processing of mostly standard statistical models, notably in terms of prior specification and of the stochastic algorithms that are required to handle Bayesian estimation and model choice questions. We plainly expect that the readers of our book will have no difficulty in assimilating the BUGS philosophy, relying, for instance, on the highly relevant books by Lunn et al. (2012) and Gelman et al. (2013).

A course corresponding to the book has now been taught by both of us for several years in a second year master’s program for students aiming at a professional degree in data processing and statistics (at Université Paris Dauphine, France) as well as in several US and Canadian universities. In Paris Dauphine the first half of the book was used in a 6-week (intensive) program, and students were tested on both the exercises (meaning all exercises) and their (practical) mastery of the datasets, the stated expectation being that they should go beyond a mere reproduction of the R outputs presented in the book. While the students found that the amount of work required by this course was rather beyond their usual standards (!), we observed that their understanding and mastery of Bayesian techniques were much deeper and more ingrained than in the more formal courses their counterparts had in the years before. In short, they started to think about the purpose of a Bayesian statistical analysis rather than on the contents of the final test and they ended up building a true intuition about what the results should look like, intuition
that, for instance, helped them to detect modeling and programming errors! In most subjects, working on Bayesian statistics from this perspective created a genuine interest in the approach and several students continued to use this approach in later courses or, even better, on the job.

Exercises are now focussed on solving problems rather than addressing finer theoretical points. Solutions to about half of the exercises are freely available on our webpages. We insist upon the point that the developments contained in those exercises are often relevant for fully understanding in the chapter.

Thanks

We are immensely grateful to colleagues and friends for their help with this book and its previous version, *Bayesian Core*, in particular, to the following people: François Perron somehow started thinking about this book and did a thorough editing of it during a second visit to Dauphine, helping us to adapt it more closely to North American audiences. He also adopted *Bayesian Core* as a textbook in Montréal as soon as it appeared. George Casella made helpful suggestions on the format of the book. Jérôme Dupuis provided capture-recapture slides that have been recycled in Chap. 5. Arnaud Doucet taught from the book at the University of British Columbia, Vancouver. Jean-Dominique Lebreton provided the European dipper dataset of Chap. 5. Gaelle Lefol pointed out the Eurostoxx series as a versatile dataset for Chap. 7. Kerrie Mengersen collaborated with both of us on a review paper about mixtures that is related to Chap. 6. Jim Kay introduced us to the Lake of Menteith dataset. Mike Titterington is thanked for collaborative friendship over the years and for a detailed set of comments on the book (quite in tune with his dedicated editorship of *Biometrika*). Jean-Louis Foulley provided us with some dataset and with extensive comments on their Bayesian processing. Even though we did not use those examples in the end, in connection with the strategy not to include BUGS-oriented materials, we are indebted to Jean-Louis for this help. Gilles Celeux carefully read the manuscript of the first edition and made numerous suggestions on both content and style. Darren Wraith, Julyan Arbel, Marco Banterle, Robin Ryder, and Sophie Donnet all reviewed some chapters or some R code and provided highly relevant comments, which clearly contributed to the final output. The picture of the caterpillar nest at the beginning of Chapter 3 was taken by Brigitte Plessis, Christian P. Robert’s spouse, near his great-grand-mother’s house in Brittany.

We are also grateful to the numerous readers who sent us queries about potential typos, as there were indeed many typos and if not unclear statements. Thanks in particular to Jarrett Barber, Hossein Gholami, we thus encourage all new readers of *Bayesian Essentials* to do the same!

The second edition of *Bayesian Core* was started, thanks to the support of the *Centre International de Rencontres Mathématiques (CIRM)*, sponsored
by both the Centre National de la Recherche Scientifique (CNRS) and the Société Mathématique de France (SMF), located on the Luminy campus near Marseille. Being able to work “in pair” in the center for 2 weeks was an invaluable opportunity, boosted by the lovely surroundings of the Calanques, where mountain and sea meet! The help provided by the CIRM staff during the stay is also most gratefully acknowledged.

Montpellier, France
Paris, France
September 19, 2013

Jean-Michel Marin
Christian P. Robert
Bayesian Essentials with R
Marin, J.-M.; Robert, C.
2014, XIV, 296 p. 75 illus., 38 illus. in color., Hardcover