Preface

While a concept in evolution, Computational Surgery is a new discipline that focuses on the application of medical imaging, robotics, biological modeling, simulation, and information technology in surgical treatment of patients. The COSINE consortium (computationalsurgey.org) founded in 2008 aims to produce a new breed of engineers and scientists who can partner with physicians to evolve the next generation of surgical care. This effort, fueled by the urgent need expressed by thought leaders in the medical device industry, seeks to facilitate the rapid evolution toward computer-assisted surgical-based therapies. At a time where the medical budget of advanced countries is the fastest growing sector of the economy, the challenge to improve efficiency while maintaining the quality of care requires new and innovative solutions. As stated in the inaugural 2010 issue of this book, “The future of surgery is intrinsically linked to the future of computational sciences: the medical act will be computer assisted at every single step, from planning to post-surgery recovery and through the surgical procedure itself.” The underpinning of the sentiments is even more true today, with this second issue offering a more mature picture of a field that is taking root in a variety of core disciplines. As a collective group focus, research interests encompass but are not limited to the following areas:

- Modeling and simulation to predict surgical outcomes
- Real-time simulation to augment operating room procedures
- Design of new medical devices to meet procedural needs
- Integration of patient-specific data to procedural planning and outcomes
- Multi-scale modeling of surgical disease

In the current issue, we present recent progresses in four complementary fields of computational surgery:

1. Modeling and Simulation of Surgical Procedures
2. Robotic and Image-Guided Surgical Intervention
3. Image Analysis and Visualization for Surgical Planning
4. Information Technology as a Framework for Surgical Decision Making
Among the primary goals of this book is to promote the development of Cyber-Infrastructure in the operating room, with a particular emphasis on computational methods to optimize the integration of procedural technologies, informatics, and human factors to maximize the delivery of surgical care. We are taking a holistic view of the operating room toward an integrated platform that combines simulation, imaging, and robotics into a new framework for surgeons and engineers, requiring new skills and promising interactions. This book provides a strategic view for developing a cross discipline curriculum in computational surgery aimed at two disciplines:

• Computational scientists and engineers motivated to collaborate with surgeons to improve the state of the art.
• Surgeons who are interested in the cutting-edge computational technology innovations that drive medical imaging, robotics, and virtual surgery simulation.

Following the introduction, which offers a roadmap to achieve this goal, the book is organized into five parts that address successively the computer-assisted management of disease and surgery, the role of image processing in diagnostic and/or intervention, the image driven intervention and robotic, the contribution of modeling and simulation to surgery, and finally the training and performance analysis inherent to this new technology. We have made special efforts to include extended review chapters that define the landscape of the medical knowledge required to facilitate the dialog between specialties. Our special thanks go to Brian Butler, Shanda Blackmon, Mark Davies, Min P Kim, Alan B. Lumsden, Bin S Teh from the Methodist Hospital and William W. Lytton from the Downstate Medical Center, who have provided much of the information provided in this contribution. Other chapters address various innovative computational methods and techniques for surgery improvement, some intended to rapidly open the path toward new practices, and others designed to outline critical areas of active research that require additional development prior to integration into everyday life surgical practice.

Part II of this book discusses the computer-assisted management of disease through medical imaging and image analysis. Detailed in the first chapter is a state-of-the-art virtual reality environment dedicated to the comprehensive planning of surgical and interventional therapies. The following chapter describes the application of computer-aided analysis in the planning and delivery of radiotherapy through use of an integrated system that simultaneously images the patient and controls the local delivery of radiation. The final chapter of this section demonstrates the role of modeling and simulation to predict the cosmetic outcome following local surgical treatment of breast carcinoma.

Part III examines approaches aimed at improving the real-time connection between diagnostic imaging and the delivery of care. In this section, we engage the complexity of multivariate data, requiring both efficient modeling to reconstruct complex images and advanced informatics to facilitate the rapid communication of complex datasets. Driving this work is the development of a better and faster tool to guide surgical intervention.
Part IV builds upon automatic image processing and real-time image guidance to drive sophisticated and complex interventions. This part looks at four complementary fields of application: cardiovascular intervention, orthopedic reconstructions, lung cancer resection, and abdominal endoscopy. The commonality between these divergent disciplines is the extensive use of computers and algorithms to obtain the most accurate and efficient minimally invasive procedures. It is a fascinating area of research where medical imaging, innovative processing methods, and advanced robotic devices come together with simulation algorithms to optimize control and maneuverability. The recent introduction of arthroplasty using personalized resection guides is an excellent example of these challenges, where efficient and robust methods are required to extract clinical landmarks from diagnostic images to reduce uncertainty and increase the reliability of the intervention. Similarly, innovative technologies exploiting miniaturized and smart robots are offering opportunities to gain access to the internal body, through access points that can be quite remote from the region of interest, reducing scars, and speeding up postoperative patient recovery.

Part V returns to the fundamental understanding of disease. Through the mathematical modeling of tissue adaptation and repair, therapeutic opportunities to improve outcomes can be identified. Fundamental to this approach is a model that is sufficiently accurate to provide reliable prediction yet robust enough to work on available clinical data. Several applications from cardiovascular intervention to cancer management, from neurologic disease to bone assessment, are reviewed.

Finally, Part VI discusses the fundamental aspect of training in surgery and the use of computational approaches to assess clinical competence. An improved understanding of the integration and implementation of technology in the operating room is critical to optimizing the efficiency procedures.

Our hope in detailing general concepts and reporting specific examples in computational surgery is to both grow the field and bring together modeling, computing, robotics, and imaging into optimal surgical platform. Science discovery in modern surgery will benefit from this unique dialogue initiative between a community of surgeons and computational scientists. Finally, we would like to thank the Partner University Fund (PUF), the Atlantis program, and the John F. and Carolyn Bookout Distinguished Endowed Chair in support of this team project.

Houston, TX, USA
Houston, TX, USA
Gainesville, FL, USA
Illkirch, France
Milano, Italy

Marc Garbey
Barbara Lee Bass
Scott Berceli
Christophe Collet
Pietro Cerveri
Computational Surgery and Dual Training
Computing, Robotics and Imaging
Garbey, M.; Bass, B.L.; Berceli, S.; Collet, C.; Cerveri, P. (Eds.)
2014, XII, 394 p. 156 illus., 114 illus. in color., Hardcover