Chapter 2
Castell Henllys in Its Temporal, Cultural, and Intellectual Contexts

Abstract Castell Henllys is an inland promontory style of hillfort located in West Wales, on the western edge of Britain, in a landscape with large numbers of known enclosed later prehistoric settlements. The hillfort settlement was constructed in the middle Iron Age, c. 400 BC, and in the first or second century BC it was abandoned and a smaller settlement established in its annexe area, before a brief reoccupation of the promontory in the late Roman or post-Roman (fourth or fifth century AD) and then abandonment. Castell Henllys became important again in the late twentieth century as an archaeological site, with a long and complex excavation biography, and as a heritage attraction and educational resource.

The writing of a large excavation report is an experience that combines hard work with confusion, consternation, elation, frustration, and intellectual gymnastics. Many types of field record—written, drawn, and photographic—are drawn together, though they have been created by a vast array of different individuals over many seasons. The aims, assumptions, and experiences of those involved in the project in the field, and subsequent analysis, all affect the development of the archive and the types of questions asked and answers that are revealed. Memories and old interpretations that fitted the partial evidence at one stage of the excavations have to be tempered with the more recent discoveries and the re-evaluation of stratigraphy, spatial patterning, and assumptions about the Iron Age that have been coloured by changing intellectual environment in this case over a quarter of a century. Nevertheless, the site itself provides, through its form and content, important constraints as to the types of evidence available to the researcher. Whilst the patterning of the data are in part due to field and analytical methodologies, an explicit statement of these can aid the author and others in their assessment of the results and future reinterpretation of the data.

This chapter provides a series of introductory sections that help to define the site under discussion and its physical, cultural, and intellectual context. The changing approaches to the fieldwork are explained, and the constraints on the data caused by natural and cultural factors in the past and present are outlined. There is at present much discussion and experiment in conduct of archaeological fieldwork and the production of archaeological reports (Barrett et al. 2000; Hodder 2000; Mytum 2012a), and the ambitions and role of this volume are explicitly discussed in the last part of the chapter.

The following chapters describe and discuss the physical evidence for the earliest, palisaded settlement and the subsequent earthworks at the site under a series of topic headings. Here the detailed stratigraphic and spatial data are outlined, and the constraints and possibilities for interpretation set out. In places interpretation may be limited, in others a variety of possible options can be set out, with the evidence for and against each alternative. Where one possibility seems much stronger than the others this is made clear; multivocality (by the same author) is allowed but not encouraged to the point of avoiding responsibility for interpretation. As the person so long involved in working and thinking...
about the site, it is my duty and my joy to provide some assessment of what seems most likely to me. An appendix discusses how the narratives for the rampart sequence would have differed if only some of the evidence were available. This insight into the effects of partial excavation reveals what elements of the narrative are easily identified and remain robust and which inferences can only be held with certain partial data. Clearly, not all data has been collected; even the most complete that is presented here is itself partial, but it does set parameters against which less extensive excavations can be set. Moreover, the full description of the limited artefactual and ecofactual evidence is not presented in detail here, and the internal structures will be described and interpreted in a subsequent volume. Emphasis is here placed on the monumental definition of the site and access to it.

The earthworks that define the Castell Henllys site and which are so typical of the Iron Age hillfort tradition are reviewed and interpreted in Chap. 6. Here issues of defence, social status, symbolism, and monumentality are considered, though not the details of possible above-ground reconstruction of the entrance, which is to be placed alongside other building reconstruction in the second volume that also incorporates the internal structural evidence. Here the role of the experimental reconstructions will have a bearing on the entrance architecture as well as that of the houses, and so visualisation in general is discussed there. The Castell Henllys adventure is not over, but this monograph marks a significant milestone in the wider understanding of Castell Henllys and will provide a tool for others to develop their understandings of the site and its context, wide or narrow. This form of publication does not greatly allow for the presentation of emotions and experiences that such an undertaking engenders. The monograph already has more than enough duties to discharge, so these and other aspects of the work will be produced in other forms and archives of the primary data will also be stored (see Sect. 2.9).

2.1 The Spatial and Cultural Context of Castell Henllys in the Past

The archaeological sequence at Castell Henllys can be summarised to provide a background to the detailed discussion and analysis of the earthwork sequences reported here. The whole history of the site up to the present is outlined so that other discussions of land use, changing research designs, and the social context of the site can be appreciated. Castell Henllys has been set within a changing landscape over several millennia, but emphasis will be placed here on its original period of occupation in the middle Iron Age (c. 500 BC) to early post-Roman period (c. 450 AD) and then its role today, with limited discussion of the intermediate centuries. Castell Henllys has a long history, and one that contains phases when it was of great local significance, and others when it was of minimal importance. Despite periods of intermittent activity from the Mesolithic through to the Bronze Age, when lithic artefacts were reworked or deposited on the inland promontory, it was only in the middle Iron Age that a permanent settlement was established. Discussion will first focus on the spatial and cultural context of the site’s establishment and occupation through the middle and into the late Iron Age, with a reflection on its role in the late/post-Roman phase. The contemporary role of the site will then be considered, within the local community and those with wider interests including tourists, students, and archaeologists.

2.1.1 Iron Age Castell Henllys

Castell Henllys is located in north Pembrokeshire, West Wales, in a region noted for its dense distribution of relatively small enclosed settlements of various forms and with very few larger hillforts (Fig. 2.1).
The detailed landscape around Castell Henllys is unknown both for the time of the settlement’s foundation and during its occupation through the Iron Age. This is a problem not unique to this site but represents a limited appreciation of later Bronze Age and early Iron Age settlement in West Wales generally. However, it is clear that the construction of the settlement must have had a major impact on the immediate environment, with probably significant though selective changes being made further afield, to acquire specific structural timbers and the large amounts of roofing materials required. Unfortunately, the lack of knowledge concerning an immediate prior settlement in the region makes the implications of this impact even more uncertain, but Castell Henllys as a settlement defined by earthworks can be considered as possibly contemporary with typologically similar sites known in some numbers from the region. These can be used to provide a potential settlement context for Castell Henllys once in use, though even here superficial similarities may belie different settlement histories, as with Berry Hill fort near Newport with its short, significantly earlier sequence (Murphy and Mytum 2012).

The first middle Iron Age settlement was a palisaded enclosure with its outer, northern, extent marked by a stone chevaux-de-frise, an arrangement of upright stones set in the original ground surface. This was closely followed by an inland promontory fort defined by ramparts (banks) and ditches defining an inner settlement zone and an outer annexe. By the scale of the defences in relation to the internal area, and the scale and complexity of the gateway architecture, the site was of considerable
importance during the first phases of occupation. The use of stone walling, and the provision of guard chambers, indicates that the inhabitants of Castell Henllys were participating in the current trends in fort building seen elsewhere, such as in the Welsh Marches (Cunliffe 2005). These structures collapsed and were rebuilt in a different style with only one pair of guard chambers which then collapsed again, this time not to be replaced. The regional importance of Castell Henllys may have waned, though it is also possible that elaborate gateways were no longer required or desired. It is unclear whether occupation of the annexe area began during the main fort occupation, but if it were it would seem that this was not intensive. The inner enclosed area continued in use until the late pre-Roman Iron Age, when the numerous timber roundhouse sites were abandoned, and some were replaced by four-post granaries. It is unclear whether there was human habitation in the outer, annexe area at this time, but it is unlikely that the site as a whole was ever completely abandoned.

Castell Henllys can be seen as part of a distribution of inland promontory forts that can be identified in the valleys of northern Pembrokeshire and southern Cardiganshire. There are three main concentrations of such sites. The Nevern valley, and its tributaries, is the one which includes Castell Henllys; to the west is the Gwaun valley, and to the east is the Piliau, a tributary of the Teifi. Each of these valleys has been filled with forts that share similarities in siting and form and which imply that the landscape around these valleys was being fully exploited and controlled, though only the Nevern group immediately around Castell Henllys is described and discussed here.

The extent to which the extensive plateau areas between the valleys were occupied and exploited is uncertain. Interpretation is dependent not only on the extent of the lands or territories assumed to be associated with each of these forts but also on the chronology and therefore contemporaneity or otherwise of the forms of enclosed settlement known from earthwork, aerial photographic and geophysical survey in the plateau areas. Nevertheless, the similarities between the inland promontory sites form a useful starting point in the discussion of the settlement and landscape, and the social and ideological worlds within which these operated and in each of these zones other nearby sites are also discussed.

2.1.1.1 The Nevern Valley (Fig. 2.2)

The river Nevern flows out into Newport Bay, with its beaches that could have been used to land seagoing vessels and an estuary that produces large quantities of reeds suitable for thatching. It meanders inland with various tributaries of which the Duad is the most significant here. The valley bottom is a narrow flood plain beyond which steeper slopes lead up to rolling plateau areas. It is on the upper edge of these slopes that forts are located, often where a spur has been naturally formed where a tributary joins the main river, or there is a particularly sharp curve in the valley side. It is this latter topographic position that provides Castell Henllys with a suitable site.

Castell Henllys is the only fort in the Duad valley, though one sub-circular enclosed farmstead, Henlys Top Field, is known on the plateau to the north (Mytum and Webster 2001), and a rectangular enclosure on the opposite side of the valley immediately to the east of Castell Henllys has been recently identified. However, both are likely to be later than the occupation of the main fort; radiocarbon dates for Henlys Top Field indicate late Iron Age and Roman occupation, and the morphology and internal plan derived from geophysical survey at the other site suggest a similar chronology.

To the south the river Nevern provides suitable locations for forts on two closely spaced small promontories, and both have been identified as sites. Cwm-pen-y-benglog is a bivallate fort, with evidence of scarping of the valley sides. Nearby is Castell Llwyd, a univallate fort with a counterscarp bank.

On the top of the plateau between the Nevern and the Duad lies Castell Mawr, a large sub-circular enclosure with an inner quarry ditch and outer bank; it was later subdivided by a bank and ditch. Magnetic susceptibility survey demonstrated higher readings inside the sub-circular earthwork than
2.1 The Spatial and Cultural Context of Castell Henllys in the Past

outside, with the highest readings inside the area enclosed by the later bank (Mytum and Webster 2003). The large enclosure may be a late Neolithic henge monument, or a fort may be similar to Broadway in the Llawhaden study area and may be the earliest enclosed settlement in the area, belonging to the late Bronze Age (Williams and Mytum 1998). The smaller enclosure is probably a late Iron Age reoccupation similar to other plateau settlements.

Soon after the Nevern and Duad join, a small stream runs in from the north, and here two almost conjoined small forts can be found at Cwm Gloyne (Mytum and Webster 2001). These may be small versions of sites like Castell Henllys or may be promontory versions of the enclosed farmsteads on the plateaux. Evidence of occupation in the later Iron Age was recovered, but the limited excavation and degree of animal disturbance makes the negative evidence for earlier occupation insufficient to rule out contemporaneity with Castell Henllys.

The next fort to the west is at Castell Nanhyfer, Nevern, though now overlain and modified by the Norman and Welsh motte and bailey castle (Turvey 1989). This makes it difficult to be certain of the original design, but it is likely that the fort was probably bivallate and may have had further outworks. Like Castell Henllys, the valley slope was extremely steep, and most effort was probably expended on defining the sides to the north and north-west. It is noteworthy that this fort remained the local power base which was at first seized by the Normans who constructed a motte and remodelled the earthworks. It was then briefly recaptured by Rhys ap Gruffydd in 1191, only for him to be subsequently imprisoned there for a time by some of his sons (Turvey 1997). In under a decade, however, the Normans finally seized full control of the area. They shifted military and administrative functions to the newly constructed castle at the Norman urban foundation of Newport, and Nevern was deliberately left to decay. Recent excavations have concentrated on the medieval phases and have not thus far examined locations where survival and identification of earlier remains is likely (Caple 2009). It is probable that Nevern had remained the major regional power centre after Castell Henllys was deserted.
in the late Roman/post-Roman period; its church was a major early foundation, with a variety of early medieval sculpture spanning several centuries and was one of the two sites in the county along with Carew with large stone crosses (Edwards 2007; Nash Williams 1950; Thomas 1994) and is the centre of the largest single parish within Pembrokeshire. It is also noteworthy that the parish stretches as far east as to include Castell Henllys.

Until recently, no other forts were known between Nevern and the sea. However, in 1989 Terry James identified a crop mark site at Berry Hill. This site encloses a small knoll next to the cliff leading down to the beginnings of the Nevern estuary. This large, oval enclosure lies at a right angle bend in the river, with two sides defined by steep natural slopes. The long north side is marked by a ditch and internal bank, and an entrance with a slight hollow way approach lies on the western side, with a short stretch of earthwork running on to the scarp edge. The enclosed area is over 0.5 ha, similar to that of Castell Henllys and Nevern. Recent excavations (Murphy and Mytum 2012) indicated that the fort may have been unfinished and certainly did not have a long and complex occupation history, despite its excellent location. This reveals the complex and varied dynamics in site construction and use that makes interpretation of unexcavated earthwork site data difficult.

The settlement evidence suggests that three main forts lay along the Nevern valley and its tributaries, at Berry Hill (albeit briefly), Nevern, and Castell Henllys. Two pairs of smaller forts, the two at Cwm Glyne, and Cwm-pen-y-benglog and Castell Llwyd, provide further sites that occupy all the topographically likely locations within the valley system. Assuming that most were occupied at the same time, it would appear that the landscape was divided up into a series of blocks divided by river valleys, each able to control a stretch of valley and the plateau lands more suited to grazing and arable farming.

2.1.1.2 Other Settlement Types

The Llawhaden cluster of sites has provided an outline chronology of settlement change for the region (Williams and Mytum 1998). To this can be added recent work on coastal promontory forts that suggests that, whilst some had late Iron Age and Roman period occupation, there was an earlier phase of construction of such sites. Indeed, several may have begun life defined by chevaux-de-frise, though these have only been observed in eroding cliff-face sections, preserved as at Castell Henllys beneath later earthwork ramparts.

The uplands of the Preseli mountain range provides some enclosed sites that share some characteristics with Castell Henllys. Carn Alw has a chevaux-de-frise, and the angled approach to the entrance is also similar to that of Castell Henllys. A smaller area is enclosed, but natural slopes provide much of the defensive strength and monumental appearance of the site (Mytum and Webster 1989). At a greater distance, and without the chevaux-de-frise, is Carn Ffôi (RCAHMW 1925, no. 816), which otherwise is similar to Carn Alw. The large enclosure on top of Carn Inglis (Hogg 1973), intervisible with Castell Henllys, probably belongs to a much earlier period, though to exactly what date the irregular stone walls joining rock outcrops should be ascribed is unclear. Of more certainty and relevance is the multivallate stone-walled hillfort of Foel Trigarn. Excavated well for the time by Sabine Baring-Gould in 1899, the site has produced a range of Iron Age artefacts including spindle whorls and glass beads (Baring-Gould et al. 1900). The site is notable for the large number of hut scoops still visible on the surface, and excavations concentrated on these. Baring-Gould did not have the methodology to identify the remains of timber buildings, so it is uncertain whether the platforms had structures and if so of what type. Nevertheless, their number and density suggest large levels of activity at least seasonally on the hilltop. This site may have acted as a regional meeting place and centre for those living in the scattered polities controlled from sites such as Castell Henllys. Foel Trigarn may have remained important during the later Iron Age and Roman period, when the scattered farmsteads were occupied, as Roman
casual finds are reported from the hilltop. The excavations did not yield such finds, however, so activity may then have been physically restricted or may not have involved settlement.

No open settlement is known for the Iron Age in the region around Castell Henllys. The palisaded site at Drim in the Llawhaden (Williams and Mytum 1998) and the open settlement evidence from the sand dunes around Stackpole Warren in south Pembrokeshire (Benson et al. 1990) merely hint at a wider range of settlement forms than those already known. What is unclear is whether the absence of evidence in the regions with the numerous inland promontory forts reflects a real absence of other settlement or not.

2.1.1.3 Discussion

At one extreme, the builders of Castell Henllys entered an empty landscape and were its only inhabitants. At the other extreme, the region was full of unenclosed settlements, in a landscape already well managed and exploited. In this situation two further possible scenarios can in turn be postulated. In the first, the fort builders came from these communities that joined forces to create the enclosed and nucleated settlement that is the subject of this report. In the second, the fort builders were incomers who stamped their authority over the area by the construction of this visible and monumental site. In this case the indigenous population may have remained as an underclass, may have been integrated, or even removed or displaced (see Sect. 15.6).

The critical issue with regard to wider interpretation of Castell Henllys, and indeed Iron Age settlement in many regions of Britain and Europe, is the extent to which the archaeologically visible settlement forms represent all or only part of the original pattern. This affects how resources were managed and shared, the labour available to construct and maintain the settlement in all its aspects, to whom any symbolic communication is being directed, and from whom any violent threat may be perceived. In some sense, the abundance of data from the fort itself highlights the problems with wider interpretation that this uncertainty creates. As some of the buildings excavated at Castell Henllys leave no subsoil trace even in excellent conditions of preservation, the absence of evidence cannot be used to definitely deny the presence of settlement, particularly in this aceramic context. For most of the history of the project, it was assumed that there was a subservient population living outside the main fort enclosure, perhaps within the annexe area and certainly scattered across the landscape managing fields, flocks, and herds. This assumption therefore pervades some of the description and ongoing interpretation throughout the volume. In places, however, an alternative view is considered, one where the inhabitants of sites such as Castell Henllys were the sole occupants of the landscape, and it was on their own efforts and resources that the settlement depended.

2.1.2 Castell Henllys in the Late Iron Age and Roman Period

In the late Iron Age, occupation shifted to small enclosed farmsteads scattered on the plateau areas on which the agriculturally better brown earth soils were located. A double farmstead was established in the outer annexe area of the Castell Henllys fort. The four-posters within the fort were also removed, and the fort seems to have been completely abandoned. The shift was definitely before the arrival of Roman military presence in the area and can be seen as part of the local reaction to social and economic changes seen elsewhere in southern Britain and which clearly had an impact even in West Wales. It is not clear to what extent there was already settlement between the main fort earthworks and the outer rampart, but from the late Iron Age onwards there was a settlement with several roundhouses, four- and six-post structures, and a stockyard for cattle. This seems to have been in use till the fourth century AD or later, when the fort was reoccupied (see below).
During all the time that the farmstead was occupied, the main promontory fort interior was not in use for any activity that left archaeological trace. Not even refuse was dumped there, and for part of the time at least access through the main northern gateway was impeded by ditches defining a paddock or yard attached to the outer settlement. The reasons for this are obscure, but the deliberate avoidance of this area suggests a strong reason for this change in use. Why there was such a dramatic turning away from the fort is uncertain, though the general settlement shift to smaller farmsteads is well attested in the region. It is likely that the most important inhabitants moved just a short distance from inside the fort to the annexe area, whilst others set up new small enclosed farmsteads in the surrounding countryside. Aerial photography has revealed several such sites, and more are being discovered each summer, especially in drought conditions.

The late Iron Age and Roman period settlement consisted of two farmsteads, one arranged around a stockyard. Over time the buildings changed from circular roundhouses similar to those of the fort to smaller oval structures. Four- and six-post granaries continued throughout the history of the site. The second farmstead was smaller and less complex; it may have been a separate household or could have been an adjunct of the main farmstead. The inhabitants at the Castell Henllys farmsteads seem to have been the most important in the region, as more late Iron Age metalwork and Roman ceramics have been found at this site than at any others, even bearing in mind the scale of excavations at various sites. Castell Henllys thus seems to have retained its elite position in the settlement hierarchy, even though the fort itself was abandoned.

The shift to smaller farmsteads seems to have been part of a process that had both economic and social aspects, with a growth in the importance of cereals, already seen with the appearance of four-post structures in the final phase of the fort and on the smaller enclosed farmsteads (Mytum 1988a, b). The number of querns and the density of carbonised grains also increase at this time. This economic change is probably linked to political shifts whereby the small units represented by the inland promontory forts were absorbed into larger polities, held together and reinforced by tribute payment for which the increased cereal production was required. This system developed prior to the Roman period but then continued through it, with inhabitants of sites such as Castell Henllys gaining differential access to imported goods such as wine, metal objects, and ceramics, with little or nothing percolating out to other settlements in the area. Although the size and monumentality of the settlement was reduced, the inhabitants probably retained as much local power and influence as they had wielded in earlier centuries. The change was that rather than being an independent, small unit reliant presumably on alliances with regional neighbours, the group was now subservient to another group as part of a much larger polity that allowed and stimulated not only increased agricultural production, for payments of tribute, but also a level of security previously not guaranteed.

2.1.3 Castell Henllys in the Late Roman or Post-Roman Period

At a date that cannot be clearly defined, but probably in the later fourth or fifth century, the annexe settlement was abandoned and the promontory fort was briefly reoccupied. Evidence for this phase comes from a simple stone entrance constructed on top of wash and soil formation that had built up whilst the fort was abandoned. Unaware of the earlier stone defences, the occupiers built a simple stone-built gateway of freshly quarried stone, also used for interior drystone walling constructed on the rear of the visible earthwork. On the west and east where the earlier defences were no longer visible, a ditch was rapidly dug and the material thrown up to make a small rampart. The ditch was open for a short period of time, at most a few years and perhaps only months, when it was then filled in, in places with the material that had been dug out from it only a short time before.
No interior structures could be linked to this phase, and no artefacts were recovered apart from two Roman finds from the western ditch fill: a copper-alloy brooch and one sherd of Severn valley ware. Both must have been brought into the site by the constructors of these defences as no other Roman period finds have been recovered from the fort. As Roman finds occur as heirlooms in early medieval graves in region, the dating of their deposition remains problematic.

The most likely historical context for the reoccupation, followed by permanent abandonment until recent times, would be the arrival of elite members of the Irish Deisi tribe, well known at a slightly later date for their inscribed memorials and whose area of settlement may be indicated also by place names.

The polity that had controlled the area that included the Castell Henllys farmstead was threatened and perhaps had collapsed under either late Roman socio-economic decline or localised threats from the invading Irish. It would seem that the enclosed farmsteads were abandoned at this time and all their inhabitants retreated back to the promontory fort which was refurbished in a communal attempt to protect land and local power. The lack of continued settlement on any part of the fort suggests that these efforts were unsuccessful. It is likely that the local elite that had occupied first the promontory fort and then the enclosed farmstead in the annexe at Castell Henllys was, after about a millennium, removed from power by the invading Irish warrior aristocracy, the Deisi, though this may have been achieved at least in part through intermarriage (Thomas 1994). The nearby inland promontory fort at Nevern now was the main centre, though the land including Castell Henllys may have been controlled from a settlement now represented by Henllys Farm. The name “llys” means “princely residence” and “hen” means “old”. Castell Henllys was not so called because it had been the site of this old prince’s residence but rather because it was a Castell on the Henllys estate. Nevern remained the most important political centre until the Normans created the stone castle and coastal town of Newport in the twelfth century. By this time Castell Henllys was under agricultural use, as later medieval and early modern documentation attests.

2.1.4 Castell Henllys from the Middle Ages to the End of the Twentieth Century

Although no longer occupied, the prehistoric site was never forgotten. The earthworks are noted in a medieval grazing agreement, and an eighteenth-century estate map of Henllys shows the ramparts of the fort within a field named Parc Castell (Mytum 2010, Fig. 11). The site was recorded on all editions of the Ordnance Survey and received the following enthusiastic description in the Royal Commission for Ancient and Historic Monuments for Wales, accurate apart from a consistent confusion of east and west when describing the ramparts, terrace, and entrance:

770. Castell Henllys (6 in. Ord. Surv. sheet, Pemb. 6 S.W.; lat. 52° 2’, long. 4° 44’ 38”).

This is a fine promontory camp situated some 300 yards north-west of Meline parish church. The earthwork stands on the bank of the river Duad, which here forms the boundary between the parishes of Nevern, Meline, and Eglwyswrw. The east and south slopes show distinct signs of scarping to a terrace 25 feet wide, which has been utilised as a roadway to an entrance on the eastern side of the camp. The tongue of land is cut off by a formidable rampart drawn in an imposing crescent across the northern and western sides of the enclosure. The enclosed area is a little over one acre; it is known as Parc Castell (Tithe Schedule, No. 922). The northern side of the rampart rises 15 feet from the level interior and falls about 40 feet to a ditch 20 feet in width; both have been largely destroyed to the west. The entrance to the east has been disturbed, but the clubbed end of the rampart is still to be traced.

(Visited, 8th July, 1914. (RCAHMW 1925))
A smallholding consisting of the cottage of Pant Glas and a few fields including that containing the fort was sold off from the Henllys estate in the early twentieth century.

The site received intermittent visits by archaeologists confirming the main features for unpublished records compiled by the Ordnance Survey, Cadw (and its earlier manifestations), and regional sites and monument records. The University of Cambridge took two oblique black and white aerial photographs of the site in 1955 (QP 27, QP 28) which show the state of vegetation and the nature of the earthworks at that time. For most of the twentieth century, however, the site remained of little interest to archaeologists and was used largely for rough grazing by the occupants of Pant Glas. Although the annexe area was ploughed during periods of wartime food shortages, the site was often largely overgrown with blackthorn and bracken. The site passed through several hands until in 1980 it was purchased by Hugh Foster, an accountant from Maidenhead, England, who wished to develop the site as a tourist attraction. It was during his ownership that much of the fort interior was excavated, and most of the reconstructed buildings were erected.

In 1991 Hugh Foster died, and the Castell Henllys site was put up for sale. There was much local interest in the site by this time, and there was concern that it might revert to a private ownership in which the reconstructions would be torn down, excavations cease, and public access denied. The Pembrokeshire Coast National Park was encouraged to manage the site, and in 1992 the entire Pant Glas property was purchased and its future guaranteed. In the years that followed, the National Park developed its plans for the site and appointed a permanent manager and began to develop the infrastructure of the site. Excavations continued, with some financial and logistical support from the National Park, and expanded to examine in a more extensive manner the ramparts, gateway, and the annexe area.

2.2 Spatial and Cultural Contexts of Castell Henllys in the Early Twenty-First Century AD

By the twenty-first century, most of the excavation was complete, with fieldwork on the site ceasing in 2008. The excavations had formed part of an extensive field training programme and formed an element of the visitor experience during the summer season (Mytum 2012c). The excavations have now been largely backfilled, though the fort interior has never had any topsoil replaced, the surface of the subsoil gradually being colonised by new vegetation. The key excavation results are interpreted using panels and in guided tours. Research has also spread out into the wider landscape, to place Castell Henllys within its context both as part of an academic research programme and as a contribution to the National Park’s goals in interpreting the landscape of the region. The site is now an established educational and tourist venue and is well supported with resources for both the National Park school programmes and some interpretive literature for the public.

Castell Henllys today has significance both greater and less than it had in the Iron Age (Figs. 2.3 and 2.4). Few people rely for their livelihood upon it (though a handful of dedicated staff do), and none live in the fort itself. It does not serve a resident local population, but instead it has a wider set of roles for a variety of audiences and groups who feel some sense of ownership for the place. Castell Henllys is known and visited by the public, both local and more distant, and by archaeologists and heritage professionals. As such it can be seen as set within many different contexts.

Until 1980 Castell Henllys was on private land, overgrown, and only occasionally visited by those involved with the heritage as it was a scheduled ancient monument. Once purchased by Hugh Foster, it changed into an asset as part of a fledgling tourist attraction. With the commencement of archaeological excavations in 1981, the site entered the wider consciousness of archaeologists and some of the local population. It now has a range of values to various local communities and has a wider significance within the Pembrokeshire Coast National Park and within the schools, heritage and archaeological professions.
No systematic study has been conducted of local views of Castell Henllys, but many opinions have been obtained directly by the author and through comments made to students when away from the site. Many are now proud of the site and see it as a cultural and economic asset. Some have visited the place, though many have not, and rely on general publicity, gossip, and the views of their children who have been on site visits. A minority see the site as a fraud; because the buildings have been reconstructed, they are of the opinion that all the archaeology is invention, and indeed some imagine that the archaeology for the year is created and prepared ahead of the gullible students attending the dig. The overall view, however, is that this is a site that represents Welsh culture, a Celtic past unsullied by invading Romans and Normans. The Iron Age was a period of freedom, achievement, and independence that has a resonance with nationalist sentiments. This is how Castell Henllys is seen in a wider Welsh context, where images of the site create a vision of the past that is represented in most other locations only by earthworks. It is noteworthy that the National Museum of Wales has itself constructed a small Iron Age farmstead at its St Fagan’s museum, set beyond the moved actual structures of later centuries. This museum is itself a monument to nationalist ideals that, in a postmodern context with elements of national control devolved to the Welsh Assembly, may need redefinition. The inspiration of Castell Henllys has led to this simulation within a museum of real buildings and artefacts, itself an indication of how far the images promoted by Castell Henllys have infected the Welsh subconscious.

Hugh Foster was an Englishman establishing a business in a Welsh-speaking part of Wales, but his charisma, enthusiasm, and outlandish appearance tended to create mild amusement rather than antagonism.
When the site was taken over by the Pembrokeshire Coast National Park, this was both welcomed, as it saved the site from possible closure and destruction of the reconstructions, and also resented. As the planning authority based in “distant”, English-speaking Haverfordwest, relations with those north of the Preselis were not always good. Some locals have an ambivalent attitude to the site because of its associations with authority, and notably control over many local desires for development, rather than because of its cultural and economic role per se. The Pembrokeshire Coast National Park, on the other hand, sees Castell Henllys as a visible and real contribution to the northern part of the area for which they have responsibility. The levels of investment would suggest that this is no mere token involvement, but the range of perceptions of motives and actions remain mixed.

Castell Henllys is an important educational asset for schools in the region, but also further afield (Mytum 2000). During term time many parties come each week to be educated by costumed interpreters (Fig. 2.6) following induction at the purpose-built Education Centre in the valley. The Welsh National Curriculum for History includes the Celts, and this allows Castell Henllys to fill an important pedagogic and nationalistic role in the education of primary school children from West Wales and sometimes further afield (Mytum 2000). The site is also popular with schools for children with special educational needs, as the many senses and activities employed at the site are particularly stimulating. A significant proportion of all the teaching is carried out through the medium of Welsh, and all the educational materials are available in either bilingual or a choice of monolingual formats.

Visitors attend the site either as tourists passing through (often on their way to or from the Fishguard ferry crossing to Ireland) or as holidaymakers staying in a cottage or caravan in the area. A large number of cottages that had been constructed for agricultural workers in the eighteenth and nineteenth centuries in the countryside, and similar houses for mariners and other trades in Newport, have been refurbished as holiday homes. Many are owned by local people and form part of their diversified income streams in a largely seasonal employment area. Others are holiday homes, let out through agencies or used by family or friends. There are also several caravan parks in the area, but few hotels,
Fig. 2.5 Hugh Foster, initiator of the Castell Henllys reconstruction and interpretation

Fig. 2.6 Top: school group entering the smallest of the reconstructed roundhouses. Bottom: simulated Iron Age sacred spring
and none that are large. Visitors come to the region for its landscape, walking in the Preselis and along the Pembrokeshire Coast Path, for the beaches and for the heritage that includes Castell Henllys. Mass tourism can be found around Tenby in south Pembrokeshire, but relatively few of these visitors travel as far as Castell Henllys. It is thus visited by those attracted to a quiet family-orientated area, and it would seem that a very high percentage of those staying locally do visit the site. Many are return visitors, and a high proportion of these are middle class and moderately well educated. They are relatively articulate, and many interact positively with site guides and volunteers regarding the site interpretation and also the developments in the excavations over the seasons.

Castell Henllys has been one of the largest training excavations in Britain in recent years. Students varied from sixth-form students through to mature participants, and most camped nearby, on a site on the opposite side of the valley. Excavations are experiences in many ways, so the significance of Castell Henllys for such students is many and varied (Mytum 2012c). The students came mainly from Britain, but with a significant number from North America and Europe, and with a few from other parts of the world. The site has offered a range of training experiences (Mytum 2012b), enhanced by the presence of the reconstructed buildings and the public interpretation. Even for those who do not study archaeology at university, or who do not enter the heritage profession, the experiences of Castell Henllys remain strong in their memories for decades afterwards.

Relatively few hillforts have received intensive excavation in the last part of the twentieth century, and there is even less large-scale research fieldwork being undertaken in the early twenty-first century. Castell Henllys therefore has a place within the history of the study of hillforts that gives it a particular significance to Iron Age archaeologists. Though without the range of finds and features of Danebury (Cunliffe 1984, 1995; Cunliffe and Poole 1991) nor the variety of occupation periods of Crickley Hill (Dixon 1994), it is the other major hillfort excavation of the era. It follows on from the previous generation of work at South Cadbury (Barrett et al. 2000), the Breiddin (Musson 1991), and Moel y Gaer (Guilbert 1976) and provides an important western counterpoint to previous dominance of Wessex and the Marches. It augments the important excavations at Coygan Camp (Wainwright 1967) and Walesland Rath (Wainwright 1971a) in the region and provides the counterpoint to the emphasis on other earthwork categories in the Llawhaden study (Williams and Mytum 1998). Through the researches at Castell Henllys, south-west Wales can provide a well-researched and relatively well-understood regional alternative to those traditionally used in syntheses from Wessex and the Thames Valley. Castell Henllys is also an important site for experimental archaeology, building reconstructions, and heritage interpretation, where it has contributed to international discussion on the modes and roles of public interpretation (Mytum 1996a, 2003, 2004).

Castell Henllys has been a focus for experimental archaeology, much linked with the building reconstructions (Mytum 1986, 1991b, 2003, 2004), but also with earthworks (see Sect. 10.3), sling-shot experiments (see Sect. 15.6), and other taphonomic experiments (Mytum and Gilchrist 1986). The significance of the building experiments, and the value of longitudinal studies of buildings erected on their original sites, will be further explored in the subsequent volume.

Castell Henllys has also been important to a significant population within West Wales that has moved to the region for an alternative lifestyle. Hippies, New Agers, and other definitions apply with varying degrees of accuracy to such people, but many see Castell Henllys as of particular power and importance. The replica sacred spring, used in the school programme and the public interpretation, has become to some of these local inhabitants as a real sacred spring (Mytum 1999a, 2004). The Pembrokeshire Coast National Park have on several occasions cleared away genuine votive offerings placed at the foot of the wooden idols, in the spring water, or tied to the branches of the trees, so this remains a dynamic and frequently changing locale (Fig. 2.6). Inspired by still-active but overtly Christian practices in Ireland, these contemporary pagan requests for healing have been removed to leave the simulated Iron Age elements. That they appear at all, however, indicates a much deeper value given to the site in some contemporary groups. This is also emphasised through the “marriage” that took place at the site, outside the roundhouses, of two members of an Iron Age recreation society.
2.3 Biography of Excavation: Developing Excavation Research Designs

who were staying at the site to provide public entertainment. Undertaking commitments to each other in this “authentic” setting gave special potency to their mutual commitments. Unofficial entry to the site by other individuals and groups for other meaningful purposes is likely to occur, but remains unverifiable.

In the early twenty-first century, Castell Henllys thus acts as an actively researched archaeological site, a place of learning for all ages, a heritage attraction, a centre of activity for and symbol of the Pembrokeshire Coast National Park, a nationalist and Celtic icon, and a sacred place. Only 25 years ago it was none of these.

2.3 Biography of Excavation: Developing Excavation Research Designs

The excavations at Castell Henllys began with a limited purpose. The site had been purchased by Hugh Foster so that a recreated Iron Age settlement could be built as a tourist attraction. As a Scheduled Ancient Monument, it was protected, but Sian Rees at Cadw agreed that if a suitably qualified archaeologist could be found, then excavation could precede such development. The Llawhaden project was under way at this time, and I was approached as a research-active academic (then a James Knott Research Fellow at the Department of Archaeology, University of Newcastle upon Tyne) to conduct some fieldwork. Preliminary survey took place in late 1980, and excavation began the following Easter vacation, after the interior had been cleared of a thick covering of blackthorn bushes.

2.3.1 Initial Research Design

The only previous published account of the site gave a brief description with no comment regarding any internal occupation (RCAHMW 1925, no. 770). The first task was therefore to assess whether the site had only been briefly occupied, as is now recognised at Berry Hill (Murphy and Mytum 2012), or if it had a long and complex history. If it had been the former, then only limited excavation would have been necessary and then a recreated site, based on evidence from other settlements, could have proceeded at Castell Henllys. Excavation in the Easter 1981 season took the form of some test quadrats scattered across the site and a 1 m wide trench into the rear of the rampart (Fig. 2.8) and another across the annexe (Fig. 2.7). These revealed complex sequences surviving in the trenches and cut features including postholes and gullies in some of the quadrats. This evaluation season demonstrated the nature of the deposits and varying degrees of preservation across the site. It was therefore decided that there was considerable potential for the site, and more extensive excavations were planned according to a more ambitious research design.

2.3.2 The Basic Defensive Sequence and the First Internal Structures

The excavations to date had been completely by hand, but it was quickly found that the topsoil was ridden with blackthorn bush roots in the fort interior and was a well-developed plough soil over the annexe. It was therefore decided that machine excavation of topsoil was the only way of being able to examine larger areas necessary for the research questions and as part of mitigation in advance of reconstruction of buildings. Three areas were opened up, two in the fort and one in the annexe. The first internal area extended from the initial trench across the defences to reveal well-preserved deposits to the rear of the inner rampart; this area was a long-term investment in examining the
sequence of settlement within the fort, possible through the survival of stratigraphy in this area. The trench through the defences was also extended, still by hand (Fig. 2.8). A machine-cut trench west of the visible inner earthworks was designed to locate the entrance; the earthmoving machine was set to cut through the ditch, but when the opposite section was examined, it was clear that it had clipped the ditch terminal and had cut into structural features and surfaces associated with the entrance. The excavation of this trench was therefore immediately terminated, and examination of this area did not take place for a number of years when an open area could be revealed, allowing the complexity of the entrance to be examined more effectively (see Chaps. 3, 12, 13, and 14). Nevertheless, some damage to the deposits did occur during this evaluation, and this is discussed where relevant in Chap. 12. However, the evaluation did identify the exact location of the entrance and indicate its complexity so that the excavation strategy for that part of the site could be prepared effectively.

The other area that was initially exposed was towards the southern part of the site, where topsoil could be removed down to the surface of the glacially deposited gravels and clays, and into which cut structural features could be found. This was the area that could be completed most quickly, allowing assessment of structural evidence and providing a plan of a roundhouse (Fig. 2.8). This structure could then be reconstructed on its footprint and utilising the excavated data, in time for the summer

Fig. 2.7 Top: initial trench across the annexe. Bottom: first open area excavation in the lee of the northern rampart
2.3 Biography of Excavation: Developing Excavation Research Designs

Tourist season of 2002 (Mytum 1986). The smaller, southern defining earthwork was also investigated with a 1 m wide trench, revealing a build-up of deposits including considerable amounts of iron slag. Excavation down the slope revealed the extent of the scarping, but dry conditions meant that the presence of a ditch on the terrace was not appreciated at this stage.

2.3.3 The Interior and the Annexe

The atypical ownership and land use of Castell Henllys provided an opportunity for a long-term investigation of a small inland promontory fort with the possibility of leaving areas open to be excavated over several seasons. This allowed the balancing of training with research as time pressures to complete one area were less severe than if backfilling after each season had been necessary. Areas were covered with plastic where necessary, or left to weather slightly, as this could lead to the better definition of cut features in the glacial gravels and clays. From 1982 a large area of the annexe was machined off and investigated, following the promising results in the initial annexe trench, and areas within the fort immediately behind the northern rampart and in the southern part of the interior were
also under investigation, with what was to be the second roundhouse to be reconstructed and excavated in the Easter field season of 1984.

By summer 1985 the southern portion of the site had been excavated, and the second roundhouse could be reconstructed. Moreover, an area immediately behind the northern inner rampart had been completed, indicating the survival of deposits, and this area was extended up onto the rear of the rampart to better understand the later phases of occupation. The areas of excavation were extended along the eastern side of the interior, joining previously separate excavation areas. Wet weather in 1985 led to the extensive excavation of some of the external ditches that were cut in gravel on the northwestern slope of the site, as these were workable when the annexe area was completely filled with water. As a result of the delays to the annexe in 1985, considerable effort was devoted to this in 1986, and in 1987 another internal roundhouse was excavated and reconstructed in the following summer. Scooped structures and working areas on the eastern slope of the interior were gradually defined and fully excavated in 1989; these were only fully understood with the final seasons of 2004 and 2005 when excavation was extended to the edge of the steep scarp. Excavation areas were also stripped on the southeastern part of the interior, leaving a large spoil heap down the centre of the site that was used as a viewing platform by the public. Various scoops, roundhouse gullies, and a four-post structure were defined by 1989.

In order to aid understanding of the various areas under investigation, the central spoil heap and the topsoil beneath were removed during 1988 (Fig. 2.9) to reveal the central spine of the promontory where, despite significant truncation, structural evidence for further roundhouses was found. The spoil was used to form a terrace at the northern boundary of the property adjacent to the old road to Cardigan, the first major alteration of the Castell Henllys topography since the construction of the fort two and a half millennia earlier. This allowed those with mobility problems to enter and park transport at the point, avoiding the steepest part of the climb to the fort. Given the limited evidence surviving in the central area, much was examined in the same year, with small amounts necessary in subsequent seasons. By 1990, the level of survival of the drystone rear revetment west of the entrance and down the western side of the site became apparent, as the build-up of deposits in the northwestern portion of the interior began to be excavated. This thick deposit of up to 1 m was extremely difficult to differentiate, and much had to be dug in spits. The damage caused to the rampart and the rear revetment wall on the western side by the late ditch was also revealed at this time, and investigation of the late Roman/post-Roman ditch began. As this was excavated with numerous cuttings, and with some linear sections, this was a slow process that took many years to complete.

The area stripping also extended out through the entrance in 1988, allowing work to begin on this complex in 1990, with the latest phase exposed in 1991. The whole of the entrance complex could be examined at once, though this slowed the exposure of any one phase. It also allowed where possible the integration of the excavation of interior deposits immediately either side of the gateway, joining up with those areas already excavated to the east and south. It also facilitated investigation of the relationship between the entrance structures and the rampart phases. The public was directed around this excavation area but had a viewing platform down onto the dig. At this stage of the project, the National Park enhanced the camp site facilities, allowing a larger excavation crew to work on the site. This allowed more aspects of the site to be investigated at any one time.

During the 1992 season, the late Roman/post-Roman gateway was also removed and work began on the second phase of the drystone-walled entrance. Whilst elements of the earlier phases were visible, the extensive layers of rubble, both tumble and possible road surfaces, required considerable care in excavation and recording, and in the process the late timber gateway revealed. Investigation of the ditch terminals at the entrance also commenced, though their excavation took several seasons to complete and, in hindsight, the eastern terminal was probably not fully excavated.

By 1992, the earlier drystone gateway phase became visible, and work on the two phases of inner revetment to the west of the gateway allowed some phasing of the build-up of deposits in this area in
relation to the defensive sequence to be understood. The exposure of a large hoard of slingshots beneath the later phase of revetment indicated that the social-symbolic interpretations of hillfort earthworks becoming popular at that time could be too simplistic. There was also a growing appreciation of the extensive nature of the late Roman/post-Roman ditch along the western side of the site, even though portions had been identified earlier.

The interior areas around the entrance were now being extensively excavated, and in 1993 the first and most impressive stone phase of the gateway was revealed. The nature of the massive gateposts, and the slots for timbers within the ramparts, was also found. The pre-rampart gateways and the early palisade were revealed west of the entrance during 1995 and 1996, and excavation of the rampart to

Fig. 2.9 Top: stripping topsoil from central area of the promontory. Bottom: entrance area after all walling has been removed
the east of the entrance exposed a ditch that had been over-dug and re-filled during the Iron Age when
the first stone gateway was constructed (Fig. 2.9). This led to a realisation that further investigation in
a more extensive manner of the rampart would be worthwhile. An Easter 1996 season removed the
experimental earthwork and stripped an area that joined together the annexe and the fort entrance
evacuations, allowing the outer elements of the entranceway to be investigated that summer. Although
there was limited stratigraphy, this was important in revealing the extent of the entrance complex, and
some elements of the sequence could be linked to the main gateway chronology. The outer gateway to
the annexe, with its ditch terminals, was investigated in 1998.

The defences on the eastern side of the promontory were examined in a narrow but precipitous
trench that revealed the loss of the rampart on this side, but the survival of the rock-cut ditch beneath
much later slumping and hill wash. This encouraged further investigation of the ditch on the southern
tip of the promontory in 1997 and on western side from 1999. The construction of the southern ram-
part was only extensively investigated after all the interior deposits had been removed from that area
from 2000, when a significant length of the earlier palisade was also exposed.

The main rampart excavations commenced in earnest in 1998, revealing pre-rampart activity and
encouraging a co-ordinated large-scale investigation that was to take place over the following 7 years,
with the probable grave pit being investigated in 2000, and other votive deposits being located in 2002
when the original cutting through the rampart was widened, and more of the rear of the rampart with
its drystone revetment was exposed. Further work on this area continued in 2003. A large-scale inves-
tigation of the rampart took place during 2001 and 2002, extending northwards from the already
investigated interior, leaving regular balks. The western end was also excavated beginning at the
entrance, working eastwards, creating a coherent excavation and recording strategy.

The eastern terminal of the inner rampart was investigated from 2001, revealing a similar construc-
tional sequence to that found to the west. Beneath the rampart were extensive craft-working activities
of the palisade phase, which led to the extension of excavations further to the south in subsequent
seasons. These exposed a length of the palisade, and a scoop itself earlier than the palisade and thus
the beginning of Iron Age activity on the site was identified in 2005, the last season of work on the
main fort, with work continuing thereafter only on the outworks and annexe area.

The outer rampart of the northern main fort defences was further examined in 2001 by expanding
the original cutting to the west, revealing the palisade trench atop this rampart in plan as well as sec-
tion. The junction of this rampart and the entrance was investigated in 2002, clarifying that it was at
this point very low, and largely formed by scarping the slope in front of the rampart.

Investigations of the outworks resumed in 1991 after a gap of several seasons, with a widening of
the original trench across the northern outer rampart and ditch. The ditches that linked the main fort
to the outworks were investigated further in 1994, and work continued for several seasons on the
annexe ditches.

Excavations at the entrance had revealed the terminal of a ditch that ran in a westerly direction
down the slope, and in 1997 the direction of this and its associated substantial though heavily eroded
rampart was located in a long trench that also confirmed the position of the rampart on the western
side of the annexe entrance. Both sets of earthworks ran down the upper slopes of the promontory but
stopped at a change of slope when the side of the promontory became much steeper. One further out-
work down the slope was identified in 2000, where a small spur of rock was adapted with a shallow
ditch behind it. There may have been deliberate scarping downslope, and elsewhere modifications of
the scarp slopes could have been achieved either by quarrying or the construction of earthworks that
have subsequently been buried under wash down the steep slopes, but given the natural topography it
is unlikely that these would have been substantial.

In Easter 1995 the western extremity of the chevaux-de-frise was exposed with careful machining
off of the overlying rampart, followed by excavation down to the buried soil during the summer sea-
son. The eastern portion was examined in 1998, leaving a central section untouched.
The outer northwestern entrance into the annexe area was located in an extensively machined area west of the *chevaux-de-frise* in 1998, and work proceeded in this area during 1999. In the centre of the annexe area, small ditches associated with the Roman period use of the site were found to mirror an earlier, larger north–south ditch which was investigated at several points along its length. In subsequent seasons, several cuttings were placed across the outer bank and ditch, identifying the course of this feature to the east and locating in 2004 a possible field system running north from the fort. The complex intercutting of ditches in the central stretch of the outer earthwork was finally resolved in 2006, whilst the probable location of a small entrance close to the outer ditch of the main fort defences was only finally confirmed in the last season in 2008.

2.4 The Chronology of Settlement

Very few artefacts have been recovered from the fort interior, and of these the small number of glass beads and isolated sherds of pottery does little more than confirm an Iron Age date. A highly corroded La Tène fibula from the buried soil beneath the main northern rampart suggests a Middle Iron Age date, but this does not assist with a close absolute date, and the paucity of finds does not allow a site chronology to be elaborated. It is therefore necessary to use the stratigraphic sequence and radiocarbon dates to create some postulated chronology.

Radiocarbon dating is notoriously difficult for the Iron Age, and this is demonstrated at Castell Henllys. Some dates acquired during the excavation of the gateway using bulk samples of charcoal and the native Roman annexe with carbonised seeds and charcoal (Beta 71570–71575) largely revealed the limited role of such a method, except to demonstrate that this was indeed Iron Age activity and that a relatively late burning in the annexe was Roman and not a post-Roman event (Table 2.1). A series of AMS dates tightened the chronological range from 400–150 BC for all but one sample which belonged to the stratigraphically late ditch but does not greatly assist chronology within this range (Fig. 2.10). Nevertheless, the dates do suggest that the main promontory fort was occupied for little more than three centuries (no suitable samples came from the highest occupation deposits within the fort). Given the sequence of builds and collapses at the entrance, and the build-up of over 1 m of deposits against the rear revetment wall west of the entrance, some form of chronology can be proposed, even with the problems associated with radiocarbon dates in the Iron Age. Whilst the detailed evidence for all these changes, their sequence and their probable duration are given in the chapters that follow, it is worth setting out the sequence and assumptions behind its interpretation here. Although the sequence and chronology for it has been derived from the data, such assumptions generated by the chronological framework have themselves fed back into the interpretation of the relative sequences and their elucidation as presented in later chapters.

The two earliest radiocarbon dates, OXA-14668 and OXA-14670, both have very tight likely dates in the period 410–390 BC. However, both samples were retested as OXA-14669 and OXA-14671 and found to be statistically later, and so are questionable. The date of the start of the palisade phase cannot be ascertained because there are no suitable samples, but one, OxA-14664, relates directly to the palisaded phase activity but could have been deposited at the end of this. However, the commencement of the construction of the ramparts has produced a number of samples that have generated securely stratified, closed samples. One sample is of bone on the ground surface beneath the inner rampart 4040 (OxA-14561) and another came from a very low layer in the rampart (OxA-14666); two dates (OxA-14674, OxA-14698) are derived from the outer rampart that sealed the *chevaux-de-frise*.

Many of the dates from stratigraphically early contexts have their first peak only slightly after the rejected samples, and have a relatively small later peak, making the earlier date more likely. The most impressive of these is OxA-14666, derived from the lowest layer 4578 in the northern rampart, and this has a most likely range of 400–360 BC. And with a very small later tail, the same pattern can be
Table 2.1 Radiocarbon dates and sample details

<table>
<thead>
<tr>
<th>Sample no.</th>
<th>Date</th>
<th>Context no.</th>
<th>Description</th>
<th>Nature of sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beta-71570</td>
<td>1850 ± 70 BP</td>
<td>1291</td>
<td>Layer stratigraphically relatively late in annexe sequence</td>
<td>Bulk charcoal</td>
</tr>
<tr>
<td>Beta-71571</td>
<td>2230 ± 70 BP</td>
<td>3528</td>
<td>Gully of possible roundhouse</td>
<td>Charcoal twigs</td>
</tr>
<tr>
<td>Beta-71572</td>
<td>2150 ± 60 BP</td>
<td>2754</td>
<td>Burnt gatepost from later stone phase entrance</td>
<td>Charcoal, structural timber</td>
</tr>
<tr>
<td>Beta-71573</td>
<td>2190 ± 60 BP</td>
<td>3539</td>
<td>Layer against walling of first phase stone entrance but over rubble probably from that wall</td>
<td>Bulk charcoal</td>
</tr>
<tr>
<td>Beta-71574</td>
<td>2270 ± 60 BP</td>
<td>3380</td>
<td>Layer against wall face from later stone phase entrance</td>
<td>Bulk charcoal</td>
</tr>
<tr>
<td>Beta-71575</td>
<td>2130 ± 60 BP</td>
<td>3549</td>
<td>Posthole probably associated with later stone phase entrance</td>
<td>Charcoal, structural timber</td>
</tr>
<tr>
<td>OxA-14561</td>
<td>2270 ± 30 BP</td>
<td>544</td>
<td>On buried soil surface prior to construction of northern rampart 4040</td>
<td>Bone (cattle, Bos, proximal right metacarpal)</td>
</tr>
<tr>
<td>OxA-14664</td>
<td>2224 ± 30 BP</td>
<td>4268</td>
<td>Roundhouse floor partially buried beneath the northern rampart 4040</td>
<td>Carbonised nutshell, (hazel, Corylus) from flotation of floor make-up</td>
</tr>
<tr>
<td>OxA-14665</td>
<td>2208 ± 30 BP</td>
<td>4490</td>
<td>Layer around iron smithing hearth</td>
<td>Charcoal (hazel, Corylus) from layer</td>
</tr>
<tr>
<td>OxA-14666</td>
<td>2289 ± 29 BP</td>
<td>4578</td>
<td>In lowest clay layer of bank with many bone fragments, charcoal, and a complete stone bowl</td>
<td>Bone (cattle, Bos, 1st phalanx)</td>
</tr>
<tr>
<td>OxA-14667</td>
<td>2052 ± 28 BP</td>
<td>2684</td>
<td>Ditch fill, rapidly dumped, mainly with rubble</td>
<td>Bone (?human, Homo), mid-shaft, probably tibia</td>
</tr>
<tr>
<td>OxA-14668</td>
<td>2340 ± 29 BP</td>
<td>1473</td>
<td>Layer with much charcoal near the base of the ditch on the western side of the metallised roadway from the outer to inner gateways</td>
<td>Charcoal (hazel, Corylus) roundwood</td>
</tr>
<tr>
<td>OxA-14669</td>
<td>2244 ± 30 BP</td>
<td></td>
<td>Dates not statistically compatible</td>
<td></td>
</tr>
<tr>
<td>OxA-14670</td>
<td>2337 ± 29 BP</td>
<td>2246</td>
<td>Burnt wall (with wattle and daub base) of small roundhouse in scoop</td>
<td>Charcoal (wattle twigs of hazel, Corylus to ~7 years in age)</td>
</tr>
<tr>
<td>OxA-14671</td>
<td>2231 ± 31BP</td>
<td></td>
<td>Dates not statistically compatible</td>
<td></td>
</tr>
<tr>
<td>OxA-14672</td>
<td>2239 ± 29 BP</td>
<td>2209</td>
<td>Pit with much burnt clay and charcoal, but no slag</td>
<td>Charcoal (hazel, Corylus)</td>
</tr>
<tr>
<td>Sample no.</td>
<td>Date</td>
<td>Context no.</td>
<td>Description</td>
<td>Nature of sample</td>
</tr>
<tr>
<td>------------</td>
<td>------------</td>
<td>-------------</td>
<td>---</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>OxA-14673</td>
<td>2267 ± 30 BP</td>
<td>2480</td>
<td>Pit, one of several along the central spine of the site, containing burnt clay, fire-cracked rock but no slag. This pit was cut by several later postholes</td>
<td>Charcoal (hazel, Corylus)</td>
</tr>
<tr>
<td>OxA-14674</td>
<td>2273 ± 28 BP</td>
<td>1498</td>
<td>Outwork rampart that seals the chevaux-de-frise</td>
<td>Bone (cow, Bos) femur</td>
</tr>
<tr>
<td>OxA-14698</td>
<td>2260 ± 30 BP</td>
<td>1498</td>
<td>Outwork rampart that seals the chevaux-de-frise</td>
<td>Bone (cow, Bos) scapula</td>
</tr>
<tr>
<td>No date obtained</td>
<td>3592</td>
<td></td>
<td>Post pipe of gateway posthole</td>
<td>Bone (large mammal, rib)</td>
</tr>
<tr>
<td>No date obtained</td>
<td>3555</td>
<td></td>
<td>Drystone wall of the guard chamber walls from the first stone gateway phase, intentionally laid between courses of walling</td>
<td>Tooth (pig, Sus, molar)</td>
</tr>
<tr>
<td>No date obtained</td>
<td>3550</td>
<td></td>
<td>Roadway surface through the first phase stone gateway.</td>
<td>Tooth (cattle, Bos)</td>
</tr>
<tr>
<td>No date obtained</td>
<td>4222</td>
<td></td>
<td>Layer associated with smithing debris, hearth, and anvil stone</td>
<td>Tooth (cattle, Bos, molar)</td>
</tr>
<tr>
<td>No date obtained</td>
<td>3592</td>
<td></td>
<td>Post pipe of first stone phase gateway posthole</td>
<td>Bone (large mammal, rib)</td>
</tr>
</tbody>
</table>
Fig. 2.10 Radiocarbon dates from Castell Henllys

seen for OxA-4561. On their own these would be insufficient to argue for a start for the earthworks of c. 370 BC, but the sequence of activities that has to completed within a period of certainly less than 400 years, and probably in as little as 250–300 years, such a start date is highly probable. It is not credible to imagine that all the phases of building, decay and rebuilding could have taken place only starting at the next peak on the graphs for those samples of c. 250 BC. Moreover, typologically similar gateways elsewhere all belong to the middle Iron Age (Cunliffe 2005: 372) and so such a late date would need special explanation. Given the bimodal distribution of likely dates for all these graphs, the start of occupation must be linked to the earlier peak.

Whilst the start of the earthwork phase must date to around 370 BC on archaeological grounds, the whole of the palisade phase needs to be placed before this to identify the start date of the settlement on the promontory. The palisaded phase of the site has only one generation of timber uprights used in
the perimeter, and this was still standing when the gravel rampart west of the entrance was first built. After 25 years of experimental archaeology on the site, it is clear that the small uprights used in the construction of the palisade would have reached the end of their functional lives after about a quarter of a century.

Given that some activity began on the site just before the palisade was erected, and that some of the craft activity and layer formation continued after the palisade was removed on the eastern side, before being partially sealed by the main northern rampart, allowing 25 years as a minimum and 40 years as a maximum for the whole pre-rampart activity would seem reasonable. Considering the number of changes to the gateway and outer structures before the construction of any rampart, it is more likely that the length of the earliest phase is nearer the latter figure.

It is thus suggested that settlement began on the promontory c. 410 bc, with the palisade erected within a few years, and being a state of decay by c. 370 bc when the gravel rampart was constructed and some of the palisade was removed. The chevaux-de-frise most probably dates from time of the palisaded pre-earthwork phase, and so is presumably late fourth century bc, probably c. 400-370 bc. Certainly OxA-14674 has only a small second peak, and it does seem unlikely that if the main ramparts were constructed c. 370, the outer definition of the site had to wait well over a century by which time it is likely that the second stone gateway was in decay (see Chap. 12). The logic of the chevaux-de-frise being part of the palisaded phase is discussed in Chap. 5, and as there is no evidence for it having existed for long (like the palisade fence), the various elements of evidence all point in the same direction.

The main northern rampart east of the entrance was constructed c. 370 bc and sealed the earlier features. The first and most elaborate stone gateway was erected at this time, together with the outwork rampart 1498 that sealed the chevaux-de-frise (OXA-14674, OXA-14698, both with a date range 400–350 bc). It is at this stage that ditch 1473 would probably have been dug linking the inner and outer earthworks, and the burnt layer near the bottom of the ditch could represent burnt palisade phase timbers cleared away with the major remodelling, though may be part of debris from a later event.

Most of the other dates provide little help in creating a chronology, but OxA-14667, a human bone from the fill of the late ditch thought to be later Roman or immediately post-Roman, provides a date 110 bc–0 ad. This suggests that human remains may have been scattered in the fort following the late Iron Age shift outside to the annexe area, and it was a residual item that entered the ditch with the fill. The earliest phases of the annexe settlement are before the arrival of late first and early second century ad Roman ceramics, and there are some examples of late Iron Age metalwork from this area, though these items could have been heirlooms removed from the fort when the settlement shifted outside to the north. Nevertheless, other excavations at Llawhaden and elsewhere demonstrate that the farmsteads represented by the annexe were established in the first and second century bc and then used through the Roman period. It is therefore possible to suggest that the fort itself had been abandoned by c. 100 bc, and probably several decades earlier, though movement out to other settlements may have been slow and over more than a generation, so this may have started c. 150 bc. It is therefore necessary to subdivide the remaining structural phases at the entrance (where the sequence is most visible) into slightly more than about 200 years.

The first phase gateway collapsed slowly, eventually leading to an ad hoc forward gate structure to control access. The collapse would not happen immediately (nothing suggests a rapid structural failure), so substantial collapse would only probably appear after a generation, and take another to build up to make the gateway unworkable. Moreover, some of the major posts on the gateway entrance were replaced, and 25 year lives for these would seem reasonable. This may take the date to c. 320 bc when the temporary forward gate was constructed. The second, reworked walling was of a very different design to the first but still had the concept of guard chambers. By this time the outer ditch had so filled up that the outer revetment wall to the west had to be set on a shelf dug in the highest ditch infill. This again suggests a considerable period to have the ditch so full. This suggests c. 300 bc for the second stone entrance phase. This again gradually collapsed, and though the wooden posts could not be easily
replaced, their very structural linking to the wall may have allowed them to remain effective even if rotted at ground level, as the whole structure was partly self-supporting. This eventually failed, however, probably partly because of collapsing walling and also rotting superstructure. This might take the sequence to c. 250 BC. A largely invisible gate phase may have lasted to c. 225 BC if of only one build, but thereafter there was limited revetting of collapsing bank perhaps to c. 200 BC, and then as the earthwork stabilised, nothing at all was constructed at the still-used entranceway. It would seem that by the time that settlement shifted out onto the annexe area in the late second or early first century BC, the ditch outside the main northern ramparts had completely filled up along its length. A roundhouse was built over the ditch, and there had been no deliberate infilling to level up the ground. This suggests that the earthworks had not been maintained for some time, and it is likely that the gateway had had no clear structural form for at least 50 years and perhaps as much as a century.

The sequence outlined above is supported but not created by the radiocarbon dates and is built around the stratigraphic sequence at the entrance and other relevant data from other parts of the site. The interior house sites show several phases of rebuilding of wall lines. The roundhouses at Castell Henllys have stood for 30 years and have no need to have their walls replaced. It is likely that such walls, if properly maintained, could last 50 or even 100 years. Therefore finding on average three phases of roundhouses on any location also fits into this overall chronology. In some places there were many more phases, in others fewer phases survive, but generally the evidence strongly supports the idea of a fully occupied fort throughout its occupation that lasted through the fourth, third, and probably the second century BC.

2.5 Methodologies of Excavation and Recording

Excavation consisted of topsoil clearance by machine followed by surface cleaning. Packing stones for postholes often protruded from the subsoil, so machine clearance was if possible at a level that just exposed the top of such stones. Mattock and shovel clearance of the remaining topsoil around packing stones then took place, followed by finer cleaning by hoe and trowel. In dry conditions brushing was also found to be effective in creating a surface that, once dampened by rain or spraying from a hose, could allow the definition of many features. As much of the site drained rapidly, and was further dried by western breezes, dampening down was often undertaken in the evening or early morning and features were then immediately marked. Localised damping with watering cans was also necessary. Different features could show in varied weather conditions, and often a significant number of structural elements would only be revealed over a winter after the topsoil had been removed, even if covered with plastic. All structural features were excavated with a trowel and were normally recorded with a section and were planned. All small features were excavated with trowels and if necessary smaller tools such as spoons.

Ramparts and ditches were excavated largely with mattock, pick, and shovel, with trawelling at stages when definition of contexts and edges were necessary. Where possible ditch fills were excavated stratigraphically, though this was not always possible. Over the seasons it became apparent that ditches suffered a great deal of slumping from the sides, and it was only too easy to consider that the full profile of the ditch had been revealed when it was only one stage of slumping that had been defined. Even to the very end of the excavation such decisions remained difficult, and were often only resolved by over-digging a profile well into the subsoil. It is therefore almost certain that the earlier ditch profiles that were excavated and recorded, particularly those dug into clay, do not represent the full ditch profiles. These matters are considered at the relevant places within the report. The problems of excavating on a mixed glacial deposit of interleaved bands of gravels and clay should not be underestimated; certainly any contract or single-season research excavation on a subsoil such as Castell
Henllys would undoubtedly miss a great number of cut structural features and would probably under-excavate many of the ditches.

Few deposits were dry sieved, though this was undertaken for quadrats of the subsoil sampled beneath the rampart. In contrast, large numbers of samples were taken for flotation and wet sieving. The effectiveness of these recovery methods relates mainly to artefacts and ecofacts and so will be discussed in the volume where they are described and discussed. The ramparts were excavated by hand, using the same methods employed in the ditches. Where possible layers were followed, but often spits were employed and layers only easily identified in section. The large-scale excavation of the ramparts would have been very slow if excavated layer by layer, but the placing of longitudinal and cross sections has allowed the three-dimensional reconstruction of the deposits.

All cut features were sectioned at least once, unless very small (such as stakeholes). Some ditches had repeated cross sections made, and the same applied to the ramparts. For some ditches, and also the inner rampart, longitudinal sections were also obtained, creating the best effort at a three-dimensional record of their form. Sections were normally at 1:10 though some large sections, and some wall elevations, were only drawn at 1:20. These smaller-scale drawings were always augmented with photography, and photography with measuring scales and with human scales was frequently taken throughout the whole project. Plans at 1:10 were produced by 10 m square across large parts of the site and as smaller plans as necessary. There was no single context planning, and some areas had pre-excavation plans where these were considered worth the effort. Given the difficulty of identifying the edges of some layers in those parts of the site with considerable build-up of deposits, most layers are not depicted on the published plans. Where edges could be defined, they were recorded on site plans, but variable soil conditions combined with earthworm and root disturbance meant that many distinctions visible in sections were not identifiable in plan. Where thick deposits could not be differentiated stratigraphically, they were excavated and recorded in spits, usually c. 0.1 m thick. Additional plans made at the end of one season allowed excavation and recording in the same areas to begin from an informed position once more at the beginning of the next.

Bound hardback context books were used, with each context having a lined page marked up with headings seen on context sheets and with a graph paper page opposite for sections, detailed plans, etc. This method of recording ensured that loose sheets did not blow away from ring binder files and that the integrity of the record was maintained. The system was not changed over the course of the project, though more electronic methods of recording would ideally have been introduced. The advantage has been, however, that the record has been of a uniform character that has aided the final writing up process.

Records have been made by supervisory staff or by students and then checked by supervisors. Some of the drawn record in particular was recognised as unsuitable and further drawings were made. The construction of the archive has therefore involved the selection of appropriate records that can be taken to accurately represent the evidence as perceived by the more experienced members of the excavation team. Issues of perception and the range of contributions made by those with varied backgrounds, experience, interest, and ability will be discussed in a subsequent volume, as these are important issues rarely discussed within excavation reports or indeed anywhere in print.

2.6 Taphonomy, Survival, and the Limits of the Evidence

The nature of the archaeological evidence recovered during excavations is dependent on the methodologies employed on the one hand and on the past behaviours and subsequent post-depositional processes on the other. Castell Henllys exhibits a range of depositional contexts that have been modified to varying degrees by subsequent natural and human agencies. The result is that the site contains diverse qualities of preservation of material, notably copper-alloy artefacts and faunal remains, and
differing integrity of deposits. These have affected research design and recovery methods, and also influence the types of interpretation possible within particular parts of the site, and the nature of comparisons drawn between one area of the site and another.

Given the opportunity for intra-site comparison and interpretation that the large-scale excavation allows, it is particularly important to identify sources of bias so that patterns produced by variation in natural forces of decay can be differentiated from those produced by past human behaviour. Moreover, there is a relative paucity of features that acted as “artefact traps” from accidental or deliberate locations of deposition, such as the pits so frequently encountered on southern British sites. This creates an illusion of a poor material culture in the past. It is therefore particularly important to understand the potential significance of the distribution, rarity, or the absence of artefact categories on the site. The potential for gaining insight even from limited densities has been demonstrated (Mytum 1989) but is enhanced when the various factors acting on the creation of those densities can be considered. Discussion will separate survival of artefacts and ecofacts due to variation in soil acidity from the survival of deposits and so the objects within them.

2.6.1 Artefacts and Ecofacts

The subsoil of the site is a mixture of glacial gravels and clays which are all acidic, but the former are particularly so. This has led to differing survival of faunal remains, with only burnt bone surviving in most contexts. In some unusual circumstances, notably associated with clay deposits or on the surface of clay subsoil, some bones and teeth survive, and copper-alloy objects can be identified though often in a very poor condition. Iron objects have suffered badly from corrosion, though identification from X-rays and selective cleaning has proved very successful. The small ceramic assemblage has been recovered from all parts of the site, suggesting no taphonomic processes influencing its survival. Rather, this probably reflects a culture largely relying on wooden, leather, and basket vessels, together perhaps with some of metal. In contrast, the iron and copper alloys are more difficult to interpret. Not only may some have been lost completely through corrosion (certainly green and brown stains that may have represented such artefacts have been noted), but the pattern of deposition may not reflect the intensity of use.

Thick refuse deposits were laid down on the inner rear of the northeastern rampart, and on the north-west over 1 m of deposits were accumulated. Containing much charcoal and small fragments of burnt bone and clay, the density of metal objects was low. This may indicate a very impoverished culture, but is more likely to indicate a tradition of recycling and reuse. It is notable that in the Roman period when access to replacement goods becomes easier for the site inhabitants, deposition rates for all classes of find increase rapidly. This could be because there was more material culture in use, but may well reflect that the turnover and discard pattern changing dramatically. This is suggested by the relatively large numbers of late Iron Age artefacts deposited in the farmstead, thrown out as a more consumption-based ethic took over.

Faunal remains have also been recovered within rubble deposits where the shale rock seems to have encouraged survival. Where there has been survival of faunal remains, it is likely that even these are partial, with certain elements of the skeleton being preferentially preserved. Most unburnt bone has been of teeth and jaws, except for under the length of rampart where the lowest layer was formed from a thick dump of clay; here a wider range of bone was recovered. The teeth survived in a variety of deposits that contained more clay or a high density of shale fragments. Many probably represent just the most resilient elements of the faunal assemblage, largely decayed. It is possible, however, that the teeth reflect jaws that no longer survive. With the exception of the teeth found on the gateway entrance roadway surface(s), that may have fallen out of skulls displayed on the entrance superstructure, teeth
2.6 Taphonomy, Survival, and the Limits of the Evidence

may have been attached to jaws. On occasion, adjacent teeth were excavated, further suggesting decayed jaw bones. Within the drystone walling, jaws were more likely to survive. This reflects taphonomy, but there is no reason to assume that other faunal elements would not have survived at least sufficiently to produce a clear stain. This did not occur, suggesting that the use of jaws, laid flat between stones in the drystone walling, was a deliberate depositional policy. It is possible that jaws were also used in other contexts than walls, and this may also account for some of the teeth finds.

2.6.2 Deposits

During the course of the excavations, the assumptions about the amount of post-depositional disturbance, damage, and erosion of contexts have changed. Early assumptions were that there had been considerable erosion on many parts of the site, and only those lower deposits near to the major earthworks had survived. Further examination of the archaeological remains partially confirms this view, but reveals far more complete deposit survival.

Within the hillfort the vertical measurement between the surface prior to excavation and the surface of the subsoil does not reveal an even depth of archaeological deposit. Rather, there has been the expected build-up of human dumping against the main ramparts, combined with post-depositional erosion during the occupation of the site that included the slumping and collapse of drystone walls (see Sect. 9.6). In general, however, erosion was low. The southern rampart lies at the lowest point of the promontory, yet the amount of wash that accumulated against it, both during occupation and subsequently, was not great. Most of the build-up of deposits in this area was the result of human activity there, such as ironworking, discussed in the subsequent volume examining the interior. Moreover, the inner faces of the ramparts show little evidence of erosion beyond slumping of drystone walls (see Sect. 10.1); this would have led to some erosion, but not on a large scale, and unevenly around the earthwork perimeter. The outer, front faces of the main northern ramparts would seem to have suffered some loss, though this was mainly with the gravel rampart to the west of the entrance. Here, throughout its use, attempts at holding back the gravel core with front revetments of timber and stone were of limited success. In contrast elsewhere, only slumping of steep ditch and hill scarp sides has led to major movements of material (see Sects. 8.1.4.2 and 10.1.1.2). In general, the earthworks have been stable and there is little reason to assume large-scale erosion from the tops of the ramparts (features such as postholes and palisades have been located in such positions). This was confirmed by the experimental earthwork that remained remarkably stable over a decade (see Sect. 10.3).

The ditches have filled considerably, and a few with adjacent gravel ramparts may have been largely filled by collapse. The majority, however, have some tumbled rocks and small amounts of wash but would appear to be largely filled with deposits that accumulated there naturally. Only in the lower levels of the ditches is there repeated evidence of rapid natural fill, suggesting that in a short period following regular cleaning the ditches eroded back to form stable profiles. The lowest ditch fills are therefore usually very clean and difficult to differentiate from natural subsoil, but this only emphasises the very different processes operating to create the rest of the ditch fills.

Small amounts of charcoal and burnt bone and clay suggest that the ditches were not used for refuse disposal, but the fill should not be seen primarily as slumped rampart either. This can be indicated by the symmetrical filling of the ditches, rather than asymmetrical fills largely derived from the rampart sides of the ditches. The stability of the earthworks may be due to a combination of skill in construction, the maintenance of vegetation cover, and the nature of the geology.

A small amount of erosion took place between the end of the main, Iron Age, occupation of the site, and the brief refortification in the late Roman/post-Roman period. Thereafter very limited erosion took place. It is likely that the earthworks have not lost very much material from the top of the ramparts as these are relatively flat, and the cut features suggest that little has been lost. The front and possibly rear
faces of the ramparts have eroded back to a more stable angle of slope (e.g. some evidence for front stone revetting has come from a range of locations), but even this is relatively modest in volume.

An indication of the stability of the bank profiles and the angle of slope to which the natural hill slope was cut can be demonstrated on the southern defences. Here, the ditch was deliberately infilled (and not with bank material) to create a flat terrace running round the hill. At the southern extremity of the site, this terrace has remained particularly crisp and fresh, with no talus of eroded material from the scarp and bank above (see Sect. 10.1.2). This also demonstrates that human deposition of refuse on the terrace also did not take place. On the western slopes there has been some erosion of the outer face of the rampart, but even here there has been little erosion subsequent to the slumping which took place during the period of Iron Age occupation on the site (see Sect. 8.1.4.2). Experimental archaeology in the form of a small earthwork which was constructed by hand and then partially excavated prior to removal after 10 years (see Sect. 10.3) indicated methods of site management which were effective in creating minimal erosion (Mytum 1991b). This provides a contrast with experiments that have emphasised the scale of erosion on earthworks on chalk and sand (Reynolds 1989; Bell et al. 1996).

Around the periphery of the site, patterns of activity producing in situ deposits in some locations, and refuse dumping behaviour in others, led to the raising of the ground surface over time. This was most noticeable in the north-west portion of the site where the rear revetment wall survived to a height of 1 m because it was protected by the gradual accumulation of refuse in this part of the site. These deposits may have been even higher but have been truncated by erosion, though there is no reason to argue for any significant disturbance. Most activity surfaces have been lost, however, and the central part of the site retains only cut features. On some areas such as immediately behind the northeastern rampart, the natural hill was cut away at some stage during occupation, and any earlier evidence there would have been lost at this time. The level of surviving buried soil around the perimeter of the fort suggests, however, that the ground level from which the surviving features were cut was probably 0.1–0.3 m above that of the subsoil. The ground surface as present on the site before excavation would therefore have been similar to that in prehistory. Thus, the deposits on the top of the promontory have been largely been reworked in the last two and a half millennia rather than eroded away and replaced with newly accumulated soils.

Perhaps due to the presence of many shale fragments in most deposits, there was little sign of animal disturbance in most deposits within the fort. The exceptions were associated with the remains of two roundhouses where patches of particularly fine gravel were attractive for burrowing, and one area of disturbance was of a size to suggest that it had once been a badger sett. The scale of disturbance at Castell Henllys is therefore minor compared with that of the nearby inland promontory fort at Cwm Gloyne (Mytum and Webster 2001).

There has been very limited erosion following the abandonment of the site. There is very slight evidence for ploughing within the fort, but this must have been of very limited duration as there is no significant build-up of soil wash against the post-medieval Enclosure phase bank. This runs around the southern and parts of the eastern and western sides of the site, and even on the steeper slopes shows no evidence of significant deposition of silts. In contrast, the annexe had a developed plough soil because this area of the site had been ploughed a number of times.

2.6.3 The Ditches

Most of the infilling of the ditches after initial slumping and stabilising of profiles (often linked to period of cleaning and recutting) must have been through the erosion of the topsoil and vegetation forming on the bank and ditch surfaces. There are three exceptions to this, which only highlight the more widespread stability of these features.
The first is the ditch 4196 around the southeastern side of the site. Unlike elsewhere a terrace was not created on this side of the promontory, but the ditch was infilled and all trace of its presence disappeared under the deposits which slumped down the hillside (see Sect. 10.1.1.2). The material was largely derived from the small rampart which hardly survived along this side of the fort, unlike elsewhere. It would seem that this must have occurred during the latter part of the Iron Age occupation by the time the historic period field bank was constructed over the remains, only the slightest trace of the rampart survived. The second example is similar, but on the western side, where the ditch 4230, already largely infilled through slow soil creep and soil formation, was buried under a slumping scarp (see Sect. 8.3). The third example is a deliberate, human, infilling of ditches 3306 and 4477 on both the western and eastern sides of the site, following the short refortification of the site in the late Roman/post-Roman period, when the ditches were dug and then soon after filled in again (see Sect. 14.3).

2.7 Perceptions, Experience, Knowledge, and Interpretation

In recent years there has been much reflection on the excavation experience and the ways in which our contemporary cultural context affects the way we work and feel (Barrett et al. 2000; Hodder 1999, 2000). The awareness of this has grown in the author over the years of carrying out the training excavation every summer, with some Easter vacation short campaigns with small teams. The group dynamics have varied greatly, and factors such as personalities, weather, quality of the food, and archaeology have all affected the experience of those involved. To what extent these factors have influenced what archaeology has been undertaken, and its quality, is more difficult to determine. Whilst morale and motivation will have affected work rates and commitment to accurate recording, this may not be such that the archive is greatly affected, given the various checks and duplications engendered by a training programme. Thus the nature of the archaeology as experience has varied greatly over shorter and longer periods, and this is important when considering the excavation as a social activity. It also has archaeological consequences, encouraging or discouraging participants to pursue further education or careers in the subject.

The effects of all these factors on the archive and the data presented here are less obvious. What has become clear, however, is that the on-site training, combined with students’ perceptions and levels of commitment, has produced a wide diversity of records for the same archaeological phenomena. This highlights the problems and the potential of archaeological field training, and these are worth exploring briefly as they may contribute to a wider debate concerning fieldwork in education and in the records created by such projects. It may also act as a concrete example in the debate regarding whether field data is more about perceptions than accuracy. In presenting this, some may consider that some of the weaknesses of this training excavation, or all such excavations are being revealed. There clearly are weaknesses, and the ongoing process of improving training has been heightened by recent developments in university education, where a more reflexive and self-critical approach is now widely undertaken (Aitchison 2004; Perry 2004). Moreover, quality control may not prevent the creation of non-standard records, but it can augment them with more appropriate and traditional archives. The non-standard material highlighted here needs to be separately considered elsewhere; does it provide information on lack of understanding, an experiment that may not have been fully successful, or an alternative way of seeing that should be given its place? The very fact that such material is even mentioned here gives it some legitimacy, though such records have not been used in the creation of the rest of the report; they have been edited out, and many if not all will not enter the permanent archive or if so will be suitably annotated.
2.8 The Purpose of This Book

This report is designed to provide detailed evidence from the excavation of the earthworks at Castell Henllys. This is presented here, along with interpretations that start at a basic phasing level and move onto attempts at understanding the significance of the actions of those involved in the construction and use of these earthworks. Whilst some comparative discussion of the form and use of the earthworks and the entrance is offered here, other elements of discussion, including reconstruction (physical and on paper), are postponed to sit alongside discussion of the internal building reconstructions. Issues of technology, techniques, cultural norms and values all apply equally to the discussions around reconstructions of houses and the entrance and so will be considered together. Comparisons of entrance ground plans and earthwork sequences are therefore considered here, but the three-dimensional forms that they took, and the implications of these, will form part of the second monograph.

The author believes that this published presentation of the excavated data was constrained by the expectations and expertise of those revealing, recording, and finally ordering it. However, it was also constrained by the physical nature of its form in the ground and as such is not completely arbitrary. The evidence is presented within the various chapters prior to the interpretations of such data because the relegation of such data to an archive would prejudice the reader in their assessment of the arguments and the easy opportunity to question the interpretive choices made here. Because the data is itself a construct based on observations, records, and post-excavation analysis informed by perceived interpretive possibilities, it cannot be divorced into an empirical archive. That the interpretations selected here are clearly chosen from several alternatives (and no doubt more than those outlined below) makes the link between what can be considered data and that which is of a higher level of interpretation even more necessary. Hierarchical headings may disrupt the flow of the text, but they do make it possible for readers to find the sections at the level of description and detail required or concentrate only on the interpretive sections. The primary archive will be deposited in physical form, but parts will be available electronically from a range of sources for those requiring even more fine-grained information (see below).

2.9 Other Modes of Dissemination

The results of research can be communicated through powerful though transient forms such as lectures and tours, through temporary features such as museum and site displays, and through (relatively) permanent reconstructions, publications, and archives. Some of these alternative forms, their effectiveness and impact, will be discussed in a subsequent monograph.

2.9.1 Dissemination to Archaeologists

This report is primarily designed to communicate with other archaeologists. This constituency has an interest in theory, methodology, the details of the evidence, the arguments regarding interpretation, and conclusions. Different archaeologists will find a diverse set of elements within the monograph of interest; few if any will read the whole, but many, it is hoped, will use elements in their own work. The physical and digital archive created by this project will be deposited at the Royal Commission on the Ancient and Historical Monuments of Wales, with digital copies with the National Museum of Wales, the Pembrokeshire Coast National Park, and Dyfed Archaeological Trust. Many forms of image will be available within the archive, including the digitised plans that formed the basis for creating the line drawings in this volume. A selective element of the digital archive will also be deposited with the Archaeology Data Service.
Some artefacts are already deposited at the National Museum of Wales and aspects of the Castell Henllys project are already used in the museum displays, though these will change over time. Other public interpretations are discussed below.

Research continues at Castell Henllys, and further publication will continue. The study of public interpretation, and the role of the site in education, has already been under way (Mytum 2000, 2003, 2004; forthcoming), and this work will continue to be reported alongside an analysis of the internal structural evidence. Longitudinal study of public perceptions and experiences can provide important comparanda for shorter-term studies undertaken elsewhere. A subsequent monograph will examine the Late Iron Age and Roman period farmstead and set it in its regional context of small enclosed settlement in West Wales.

Undoubtedly the site of Castell Henllys is itself also an important medium of communication to archaeologists as well as the public (see below). Archaeologists can observe and consider the experimental reconstructions and the site in its landscape; they can critically absorb and reinterpret the panels and leaflets and interrogate the guide staff. Many archaeologists have visited the sites with their families, obtaining a combined public and professional experience. Others have come as single or group visitors, and this will undoubtedly continue.

2.9.2 Dissemination to Other Interested Parties

The most obvious form of dissemination that has already been under way for over 30 years has been through site interpretation for visitors. This commitment has involved the design and placing of signs and interpretation panels, the laying out of carefully planned routes to allow observation of the excavations, use of students to explain the archaeological work and results, and the employment of guides and interpreters by the Pembrokeshire Coast National Park. Within this context, the ongoing and completed building reconstructions have been particularly important and stimulating for the visitors. The physical, on-site, experience of the fort set within its modern but still rural landscape provides one of the most effective ways of communicating with the public. Results from the excavations are communicated to site staff to ensure up to date and accurate information; some volunteers have in return shared their considerable expertise, such as in weaving and spinning.

Public interpretation also involved the production of a booklet, translated into a range of languages (Mytum 1984) that was available in the early years of the project, replaced by a self-guided trail leaflet produced by the Pembrokeshire Coast National Park. In recent years the Education Centre building has been used to provide interpretative displays to enhance the visitor experience and has included some artefacts that are stable and can be reasonably kept in this environment. An important innovation was to provide a guide and interpretation of the site in the Iron Age from children’s perspective, available in both English and Welsh (Mytum 1996b). This was a surprisingly challenging commission to write, as it highlighted the importance of beliefs, social relations, and emotions in the past against the physical background about which we as archaeologists were more confident.

The Pembrokeshire Coast National Park has laid particular emphasis on school education, particularly as the Celts form an element of the Keystage 2 (ages 7–11) History curriculum for Wales (Mytum 2000). A specially designed Education Centre was built, and a permanent school officer, Rhonwyn Owen, has designed and led the programme for a number of years, ably supported by a committed team of part-time interpreters and educators. Education packs (D.C.C.E.D 1993) and now a CD (Bennett and Owen 2004) have been produced to support teachers in their use of the site. Castell Henllys has also been used in other educational media, such as being a case study in the A level Archaeology text book (Grant et al. 2001).

Alternative interpretations of Castell Henllys have also been offered by the Pembrokeshire Coast National Park, ones where the archaeology has been ignored or even subverted. These have included story-telling sessions, in which the archaeological workers have been explained away as slaves...
(a view only occasionally shared by the students themselves) and where magic and myth form a major component. These were not always successful with the public, when the “scientific” archaeology was ignored or even apparently contradicted. However, the mind-sets revealed by the storyteller may have been closer to past reality than the modern logical structures of cause and effect presented by the display panels and literature derived from academic archaeological discourse. Most consumers enjoyed the story-telling, seeing it as just that—entertainment. Fewer saw it as another way of seeing a/the past. A way of resolving the live adult fictional accounts with the factual messages has not yet been found, but drama is still a key part of the children’s experience at Castell Henllys where role-playing is an integral part of the programme. This creates problems with explicit reference to archaeological data on-site as that is a conflict between Iron Age role-playing and the twenty-first-century knowledge base (Mytum 2013).

The first person approach has not been fully abandoned for the general public, however. A series of listening posts, each powered by rotating a handle, have been placed at a series of points along the path from car park to hill top. At each a different person, from the present or the past, says something about the site or the environment. This gives the Pembrokeshire Coast National Park control and consistency on what is communicated but allows in a small way different (carefully selected) voices to have their (brief) say.

Television also uses the site, particularly the reconstructed buildings, in a number of productions, the most ambitious being the BBC Surviving the Iron Age series that managed to display, if nothing else, how culturally different Iron Age life must have been compared with that of the early twenty-first century (Firstbrook 2001). The extent to which television communicates messages derived from archaeological research varies, but the setting and nature of the physical remains allow that opportunity.

Alternative, independent interpretation of Castell Henllys is relatively easy because of its public accessibility. The result is that many websites have information about the site. Some take a simple tourist information perspective; others give personal views of their experience there. It is likely that Castell Henllys also appears within other accounts of the past that neither the archaeologists nor the Pembrokeshire Coast National Park would immediately recognise. Castell Henllys is already in the public domain, and the results of the archaeological research are already permeating the wider community. There is no doubt that the experimental reconstructed buildings, given particular legitimacy because of their location on the original foundations on an authentic site and constructed using archaeological knowledge, have fuelled this attraction. The use of Castell Henllys cannot now be controlled by any one party. The evidence in this published monograph may yet add to the data manipulated in many diverse and unforeseen ways.

Published dissemination by the author for the general public will follow this monograph. The Pembrokeshire Coast National Park has been considering the production of a guide book, and popular accounts of the fieldwork and the results will in due course be produced. Further excavation will reveal new information at the site itself, but more importantly for the Iron Age phase will be fieldwork elsewhere and changes in our perceptions and understandings of the Iron Age. These should not remain trapped in an academic cul-de-sac but can, through popular publication and site interpretation, be communicated through the already developing icon of Castell Henllys to a wider audience.

The importance and excitement of later prehistory, a period difficult to explain to the public, can be communicated through vehicles such as Castell Henllys. Many contentious issues, such as the meaning of the term Celts, the role of reconstructions, the link between past and present (particularly relevant within the context of Welsh nationalism), and the role of archaeologists in the interpretative process, can all be laid bare. The public, better informed than ever by publications such as Current Archaeology and British Archaeology and television series such as Time Team and Meet the Ancestors, frequently repeated on satellite channels, can now appreciate and participate in these debates. Whilst some people are still woefully ignorant about the past—and for them the reconstructions and physical setting of Castell Henllys itself are important stimuli—many are knowledgeable about techniques and
some of the assumptions employed by archaeologists. The multi-level presentation of data and interpretation now necessary at Castell Henllys and within popular publications are both challenging and encouraging.

2.10 Conclusions

Unlike most excavations, for research or rescue purposes, Castell Henllys lives on. Though excavation is indeed destruction, here much has been created out of that loss—elements that are physical, intellectual, and emotional. These have been examined above, and they affect what public dissemination will be produced in the future, both responding to and creating public demand. They will be further explored in the subsequent monograph that examines the excavation of the buildings, and their reconstruction and interpretation, but it is important to appreciate that this investigation of monumentality sits within a vibrant and ongoing set of relationships within the academy and well beyond.
Monumentality in Later Prehistory
Building and Rebuilding Castell Henllys Hillfort
Mytum, H.
2013, XIV, 336 p. 141 illus., 87 illus. in color., Hardcover
ISBN: 978-1-4614-8026-6