Contents

1 Computational Fluid Dynamics Applications in Food Processing . . . 1
 1.1 Introduction to Computational Fluid Dynamics. 1
 1.2 Theory of CFD Modeling ... 2
 1.2.1 Conservation of Mass Equation 2
 1.2.2 Momentum Equation ... 3
 1.2.3 Energy Equation .. 3
 1.3 Turbulence Model ... 3
 1.4 Reference Frames .. 4
 1.5 CFD Analysis ... 7
 1.6 CFD Applications in Food Processing 8
 1.7 Nomenclature ... 9

2 Computational Fluid Dynamics Applications in Spray Drying of Food Products .. 11
 2.1 Spray Drying Process ... 11
 2.1.1 Atomization .. 11
 2.1.2 Spray–Air Contact ... 12
 2.1.3 Moisture Evaporation ... 13
 2.1.4 Separation of Dried Products 13
 2.2 Types of Spray Dryers ... 13
 2.3 Airflow Pattern .. 14
 2.4 Atomization .. 14
 2.5 Particle Histories .. 18
 2.6 Air–Particle Interaction .. 18
 2.7 Particle Tracking ... 19
 2.8 Particle Temperature .. 21
 2.9 Residence Time of Particle .. 21
 2.10 Particle Deposition and Position 23
 2.11 Current Trends ... 24
 2.12 Scope for Future Research 25
3 Applications of Computational Fluid Dynamics in the Thermal Processing of Canned Foods

3.1 Canning of Foods

3.2 Canned Solid–Liquid Food Mixtures

3.3 Bacterial Deactivation Kinetics

3.4 Analysis of Fluid Flow Pattern During the Thermal Sterilization Process

3.5 Thermal Processing of Canned Fruits

3.5.1 Temperature Profile and the Slowest Heating Zone

3.5.2 \(F_0 \) Value During Thermal Processing of Canned Pineapple Slices

4 Computational Fluid Dynamics Modeling for Bread Baking Process

4.1 Introduction

4.2 Bread Baking Process

4.3 CFD Modeling of the Bread Baking Process

4.4 Scope for CFD Modeling in the Bread Baking Process

5 CFD Modeling of Biological Systems with Human Interface

5.1 Food Digestion Process

5.2 Modeling of Food Digestion Inside the Human Stomach

5.2.1 Stomach Geometry

5.2.2 Deformation of Stomach Walls

5.2.3 Fluid Flow Inside the Human Stomach

5.2.4 Numerical Equations Governing Fluid Flow

5.3 Rheological Properties of Food Materials

5.3.1 Effect of Viscosity on Characteristic Flow Field Within the Stomach

5.4 Effect of Solid–Liquid Density Difference on Particle Distribution

5.5 Effect of Particle Loading on Mixing

5.6 Modeling of the Absorption Process in the Small Intestine

5.6.1 Movements in the Small Intestine Causing Mixing of Food

5.6.2 Effect of Wall Contractions on Flow of Intestinal Contents

6 Computational Fluid Dynamics Modeling for High Pressure Processing
7 Applications of Computational Fluid Dynamics in Other Food Processing Operations .. 63
 7.1 CFD Simulation of Spray Freezing Operations 63
 7.1.1 CFD Simulation Methodology 64
 7.1.2 Comparison Between Measured and Predicted Gas Temperatures ... 65
 7.1.3 Particle Impact Positions .. 66
 7.2 CFD Modeling for Jet Impingement Oven 67
 7.2.1 Flow Pattern of Impinging Jet 69
 7.2.2 Effect of Nozzle Geometry on Heat Transfer 70
 7.3 Application of CFD Modeling in the Flour Milling Industry 71
 7.4 CFD Modeling of Fumigation of Flour Mills 74

References ... 75

Index ... 85
Computational Fluid Dynamics Applications in Food Processing
Anandharamakrishnan, C.
2013, XI, 86 p. 36 illus., 24 illus. in color., Softcover