Preface

As we progress into the twenty-first century it seems that the pace of technological advance shows no sign of slowing. We are in fact becoming increasingly dependent on technology in our normal day-to-day lives, which means that we are critically reliant on the security of systems and services that are built upon this technology. In exploring this issue within a textbook, one could consider the high-level design aspects or concentrate more on the nuts and bolts of security systems. This book focuses mainly on the latter approach, as the editors and authors felt there was no introductory overview that covered a sufficient breadth of available technology and related issues. Generally speaking, a complex system is made up of smaller components such as devices, processors, security modules, memories etc. and knowing which of these can be trusted (and to what extent) to resist attacks and misuse, is critical to the security of the complete system. For example, a very sophisticated and expensive car might be reliant on a tiny embedded device (chip) in the engine management system, for it to start and for protection against theft. It is hoped that this book will help to clarify the role of embedded devices, their capabilities, and how best to exploit them in secure system designs.

Structure of the Book

The book consists of 24 chapters organised in four sections. Part I introduces some typical embedded devices and hardware, before some more generic information on security issues is provided in Part II. The Part III (which is the largest section) considers a wide range of application aspects and considerations. Part IV is provided for readers who are interested in application development for embedded devices. The chapters are written as self-contained texts, from a range of expert authors and can be read individually or in the book order. The chapters are briefly introduced below.

Part I: Chapter 1 provides an overview of smart cards and (RFID), their security capabilities and attack resistance, and their widespread use within a range of security sensitive applications. Chapter 2 then introduces Digital Signal Processor
devices which are widely used in modern devices, such as mobile phones. Chapter 3 relates the historical development of microprocessor and microcontroller chips and goes onto cover the specialist design of secure embedded microcontrollers. Chapter 4 introduces a specific type of secure controller, the Trusted Platform Module (TPM) and its mobile equivalent, that are intended to ensure (amongst other things) the safe boot up of a computing platform, so it is a reliable platform on which to load applications. Chapter 5 considers the Very Large Scale Integration (VLSI) approach to the design of electronic hardware and the potential for security attacks and associated countermeasures.

Part II: Chapter 6 provides a general recap on information security best practices. Although we are focussing on embedded devices we must not forget that without a secure theoretical design the implementation security will be fundamentally flawed. Chapter 7 illustrates how a theoretically sound security design can be undermined by a poor implementation that lacks attack resistance. The chosen attack target is the smart card; however the principles are applicable to most embedded security devices. Chapter 8 considers the Graphics Processing Unit (GPU), a processing platform that is often overlooked for its security capabilities. It can be used as a cryptographic processor; however it is also a target for malware and general misuse. Chapter 9 focuses on the FPGA, which has been exploited both to protect and to attack security systems. The discussion also extends to the protection of valuable Intellectual Property loaded into FPGAs used in commercial systems.

Part III: Chapter 10 considers a range of options for providing mobile communications security controllers. It begins with the conventional Subscriber Identity Module (SIM) and the associated personalisation, management and usage processes, but goes on to consider other possibilities, including software SIMs and TPMs. The action taken by a mobile device depends not just on the security controller, but the validity of the data that it receives, which increasingly can include a representation of physical location. Chapter 11 discusses practical approaches to location estimation, highlighting the possible security vulnerabilities. Car Satellite Navigation systems are just one obvious example of this; however as discussed in Chap. 12 motor vehicles are packed with processing technology that has important safety and security aspects. By contrast, payment card systems tend not to have such emphasis on safety, but they are required to safeguard significant financial transactions. The potential to undermine the payment terminals is discussed in Chap. 13 with reference to published attacks. Another technology where the misuse may have both safety and security implications is the (WSN) which is described in Chap. 14. For example, if a sensor value is modified, replaced or blocked the resulting effect could be serious and/or costly if the system was used for say telemedicine or metering. In fact a number of sensing and terminal solutions are proposed around mobile devices and this seems to be expanding with the arrival of (NFC) Technology. Chapter 15 considers NFC and its security in detail, and how the phone (or laptop, PDA, tablet) may emulate an RFID, or act as an RFID reader, or communicate with other NFC phones over a close proximity link. Although NFC includes a Security Element (SE) some
aspects of the functionality are reliant on the phone platform security, which has vulnerabilities similar to conventional PCs. To clarify this problem, Chap. 16 provides a recap on BIOS and Rootkit infections on computing platforms. Specialist computing/server equipment can get around this problem to some extent by the use of security hardened peripheral devices for sensitive processing. These are commonly known as Hardware Security Modules (HSM), and are discussed in Chap. 17. Such devices are normally required to be formally security evaluated and the Common Criteria approach to this is outlined in Chap. 18. In Chap. 19 there is a description of Physically Uncloneable Functions (PUFs) that have generated significant academic interest and then in Chap. 20 there is an overview of SCADA systems security that has generated significant industry concerns.

Part IV: Chapter 21 provides an overview of the PIC family of microcontrollers that are intended for general-purpose non tamper-resistant implementations; however they are often used as clone platforms, as well as for research experiments. More secure implementations are commonly implemented on Java Card platforms and the programming aspects are introduced in Chap. 22. Java has also been a preferred approach for mobile phone platforms and this approach plus important APIs are described in Chap. 23. Finally, for readers interested in experimenting with Wireless Sensor Nodes, some practical guidance on available platforms is presented in Chap. 24.
Secure Smart Embedded Devices, Platforms and Applications
Markantonakis, K.; Mayes, D.K. (Eds.)
2014, XLI, 568 p. 135 illus., Hardcover
ISBN: 978-1-4614-7914-7