Contents

Preface vii
Preface to 2nd Edition xi
Preface to 3rd Edition xiii
Preface to 4th Edition xv

Part 1. Basic Theory: The Simplex Method and Duality 1

Chapter 1. Introduction 3
1. Managing a Production Facility 3
2. The Linear Programming Problem 5
Exercises 7
Notes 9

Chapter 2. The Simplex Method 11
1. An Example 11
2. The Simplex Method 14
3. Initialization 16
4. Unboundedness 18
5. Geometry 19
Exercises 20
Notes 23

Chapter 3. Degeneracy 25
1. Definition of Degeneracy 25
2. Two Examples of Degenerate Problems 25
3. The Perturbation/Lexicographic Method 28
4. Bland’s Rule 31
5. Fundamental Theorem of Linear Programming 33
6. Geometry 33
Exercises 36
Notes 37
Chapter 4. Efficiency of the Simplex Method
1. Performance Measures 39
2. Measuring the Size of a Problem 39
3. Measuring the Effort to Solve a Problem 40
4. Worst-Case Analysis of the Simplex Method 41
5. Empirical Average Performance of the Simplex Method 44
Exercises 50
Notes 52

Chapter 5. Duality Theory 53
1. Motivation: Finding Upper Bounds 53
2. The Dual Problem 54
3. The Weak Duality Theorem 55
4. The Strong Duality Theorem 57
5. Complementary Slackness 63
6. The Dual Simplex Method 64
7. A Dual-Based Phase I Algorithm 66
8. The Dual of a Problem in General Form 67
9. Resource Allocation Problems 69
10. Lagrangian Duality 72
Exercises 73
Notes 79

Chapter 6. The Simplex Method in Matrix Notation 81
1. Matrix Notation 81
2. The Primal Simplex Method 83
3. An Example 86
4. The Dual Simplex Method 90
5. Two-Phase Methods 92
6. Negative Transpose Property 93
Exercises 95
Notes 97

Chapter 7. Sensitivity and Parametric Analyses 99
1. Sensitivity Analysis 99
2. Parametric Analysis and the Homotopy Method 102
3. The Parametric Self-Dual Simplex Method 105
Exercises 107
Notes 109

Chapter 8. Implementation Issues 111
1. Solving Systems of Equations: LU-Factorization 111
2. Exploiting Sparsity 115
3. Reusing a Factorization 119
4. Performance Tradeoffs 123
5. Updating a Factorization 124
6. Shrinking the Bump 127
7. Partial Pricing 128
8. Steepest Edge 129
Exercises 131
Notes 132

Chapter 9. Problems in General Form 133
1. The Primal Simplex Method 133
2. The Dual Simplex Method 135
Exercises 140
Notes 140

Chapter 10. Convex Analysis 141
1. Convex Sets 141
2. Carathéodory’s Theorem 143
3. The Separation Theorem 144
4. Farkas’ Lemma 146
5. Strict Complementarity 147
Exercises 149
Notes 150

Chapter 11. Game Theory 151
1. Matrix Games 151
2. Optimal Strategies 153
3. The Minimax Theorem 155
4. Poker 157
Exercises 161
Notes 163

Chapter 12. Regression 165
1. Measures of Mediocrity 165
2. Multidimensional Measures: Regression Analysis 167
3. L^2-Regression 168
4. L^1-Regression 170
5. Iteratively Reweighted Least Squares 171
Exercises 178
Notes 183

Chapter 13. Financial Applications 185
1. Portfolio Selection 185
2. Option Pricing 190
Exercises 194
Notes 195
Part 2. Network-Type Problems

Chapter 14. Network Flow Problems
1. Networks
2. Spanning Trees and Bases
3. The Primal Network Simplex Method
4. The Dual Network Simplex Method
5. Putting It All Together
6. The Integrality Theorem
Exercises
Notes

Chapter 15. Applications
1. The Transportation Problem
2. The Assignment Problem
3. The Shortest-Path Problem
4. Upper-Bounded Network Flow Problems
5. The Maximum-Flow Problem
Exercises
Notes

Chapter 16. Structural Optimization
1. An Example
2. Incidence Matrices
3. Stability
4. Conservation Laws
5. Minimum-Weight Structural Design
6. Anchors Away
Exercises
Notes

Part 3. Interior-Point Methods

Chapter 17. The Central Path
Warning: Nonstandard Notation Ahead
1. The Barrier Problem
2. Lagrange Multipliers
3. Lagrange Multipliers Applied to the Barrier Problem
4. Second-Order Information
5. Existence
Exercises
Notes
Chapter 18. A Path-Following Method
1. Computing Step Directions 269
2. Newton’s Method 269
3. Estimating an Appropriate Value for the Barrier Parameter 272
4. Choosing the Step Length Parameter 272
5. Convergence Analysis 274
Exercises 279
Notes 283

Chapter 19. The KKT System 285
1. The Reduced KKT System 285
2. The Normal Equations 286
3. Step Direction Decomposition 288
Exercises 290
Notes 291

Chapter 20. Implementation Issues for Interior-Point Methods 293
1. Factoring Positive Definite Matrices 293
2. Quasidefinite Matrices 296
3. Problems in General Form 302
Exercises 307
Notes 307

Chapter 21. The Affine-Scaling Method 309
1. The Steepest Ascent Direction 309
2. The Projected Gradient Direction 311
3. The Projected Gradient Direction with Scaling 312
4. Convergence 316
5. Feasibility Direction 317
6. Problems in Standard Form 319
Exercises 320
Notes 321

Chapter 22. The Homogeneous Self-Dual Method 323
1. From Standard Form to Self-Dual Form 323
2. Homogeneous Self-Dual Problems 324
3. Back to Standard Form 334
4. Simplex Method vs. Interior-Point Methods 336
Exercises 339
Notes 341

Part 4. Extensions 343

Chapter 23. Integer Programming 345
1. Scheduling Problems 345
CONTENTS

2. The Traveling Salesman Problem 346
3. Fixed Costs 349
4. Nonlinear Objective Functions 350
5. Branch-and-Bound 351
Exercises 361
Notes 362

Chapter 24. Quadratic Programming 363
1. The Markowitz Model 363
2. The Dual 367
3. Convexity and Complexity 370
4. Solution via Interior-Point Methods 373
5. Practical Considerations 374
Exercises 376
Notes 378

Chapter 25. Convex Programming 379
1. Differentiable Functions and Taylor Approximations 379
2. Convex and Concave Functions 380
3. Problem Formulation 380
4. Solution via Interior-Point Methods 381
5. Successive Quadratic Approximations 382
6. Merit Functions 383
7. Parting Words 385
Exercises 385
Notes 388

Appendix A. Source Listings 389
1. The Self-Dual Simplex Method 390
2. The Homogeneous Self-Dual Method 393

Answers to Selected Exercises 395

Bibliography 399

Index 407
Linear Programming
Foundations and Extensions
Vanderbei, R.J.
2014, XXII, 414 p. 86 illus., Hardcover
ISBN: 978-1-4614-7629-0