Contents

1 Introduction .. 1
 1.1 Information and Control .. 1
 1.2 Coverage and the Intended Audience 3
 1.3 Contents of the Book ... 5
 1.3.1 Part I. Information Structures in a Networked Control System ... 5
 1.3.2 Part II. Stabilization of Networked Control Systems ... 6
 1.3.3 Part III. Optimization in Networked Control: Design of Optimal Policies Under Information Constraints ... 7
 1.4 A Guide for the Reader or the Instructor 8

Part I Information Structures in Networked Control

2 Networked Control Systems as Stochastic Team Decision Problems: A General Introduction .. 11
 2.1 Introduction .. 11
 2.2 A Mathematical Framework For Static Decision Problems 12
 2.3 An Illustrative Example of a Finite Stochastic Team 17
 2.4 A Mathematical Framework for Dynamic Decision Problems ... 26
 2.5 An Illustrative Example of a Finite Dynamic Team 33
 2.6 Team-Optimal Solutions for Static Teams 39
 2.6.1 Teams with Finite Measurement Spaces 39
 2.6.2 Teams on Finite-Dimensional Spaces 49
 2.6.3 Two Special Cost Structures 52
 2.7 Concluding Remarks... 74
 2.8 Bibliographic Notes .. 74

3 Characterization and Comparison of Information Structures 77
 3.1 Introduction .. 77
 3.2 Comparison of Information Structures 78
Part II Stabilization of Networked Control Systems

5 Coding for Control and Connections with Information Theory 155
 5.1 Introduction ... 155
 5.2 Quantization and Real-Time Coding 155
 5.2.1 Real-Time Coding ... 155
 5.2.2 Information Structures for Real-Time Encoders and Controllers: Policies, Actions and Measurability .. 157
 5.3 Information Theoretic Preliminaries and Performance of Quantizers .. 162
 5.3.1 Information Theoretic Preliminaries 162
 5.3.2 Fixed or Variable Rates of a Quantizer/Encoder 164
 5.3.3 Rate-distortion Theory ... 165
 5.3.4 Channel Coding and Shannon Capacity 166
 5.4 Infinite-Dimensional Coding Versus Finite-Dimensional Coding .. 168
 5.5 Noncausal Coding for Stationary and Nonstationary Sources 170
 5.6 Fundamental Bounds on Information Rates for Real-time Stabilization Over Noiseless Channels 172
 5.7 Appendix: Proof of Theorem 5.6.1 173
 5.8 Concluding Remarks .. 175
 5.9 Bibliographic Notes .. 176

6 Stochastic Stability and Drift Criteria for Markov Chains in Networked Control .. 179
 6.1 Introduction and Motivation: Why Stochastic Drift Criteria? 179
 6.2 Stochastic Stability and Drift Criteria 180
 6.2.1 One-stage Foster–Lyapunov Drift Criteria 180
 6.2.2 State-dependent Drift Criteria 181
 6.2.3 Random-time State-dependent Stochastic Drift Criteria 181
 6.3 Appendix: Proofs .. 184
 6.3.1 Proof of Theorem 6.2.4 ... 184
 6.3.2 Proof of Theorem 6.2.8 ... 186
 6.4 Concluding Remarks .. 187
 6.5 Bibliographic Notes .. 188

7 Stochastic Stabilization Over Noiseless Channels 189
 7.1 Introduction ... 189
 7.2 Control and Communication Models 189
 7.3 Stochastic Stability Analysis for a Scalar System 190
 7.3.1 Adaptive Quantizers and a Zooming Scheme 190
 7.3.2 Stochastic Stability Analysis 191
 7.3.3 Application of the Theory of Random-time State-dependent Stochastic Drift ... 193
 7.3.4 Simulation .. 194
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.4</td>
<td>The Multidimensional Case</td>
<td>195</td>
</tr>
<tr>
<td>7.5</td>
<td>The Partially Observed Case</td>
<td>198</td>
</tr>
<tr>
<td>7.6</td>
<td>Appendix: Proofs</td>
<td>199</td>
</tr>
<tr>
<td>7.6.1</td>
<td>Proof of Theorem 7.3.1</td>
<td>199</td>
</tr>
<tr>
<td>7.6.2</td>
<td>Proof of Theorem 7.3.2</td>
<td>200</td>
</tr>
<tr>
<td>7.6.3</td>
<td>Proof of Theorem 7.3.3</td>
<td>203</td>
</tr>
<tr>
<td>7.6.4</td>
<td>Proof of Theorem 7.3.4</td>
<td>206</td>
</tr>
<tr>
<td>7.6.5</td>
<td>Proof of Theorem 7.3.5</td>
<td>210</td>
</tr>
<tr>
<td>7.6.6</td>
<td>Proof of Theorem 7.3.6</td>
<td>211</td>
</tr>
<tr>
<td>7.6.7</td>
<td>Proof of Theorem 7.4.1</td>
<td>212</td>
</tr>
<tr>
<td>7.7</td>
<td>Concluding Remarks</td>
<td>213</td>
</tr>
<tr>
<td>7.8</td>
<td>Bibliographic Notes</td>
<td>213</td>
</tr>
<tr>
<td>8</td>
<td>Stochastic Stabilization Over Noisy Channels</td>
<td>215</td>
</tr>
<tr>
<td>8.1</td>
<td>Introduction</td>
<td>215</td>
</tr>
<tr>
<td>8.2</td>
<td>Stabilization Over Noisy Channels with Noiseless Feedback and a Converse Theorem</td>
<td>217</td>
</tr>
<tr>
<td>8.2.1</td>
<td>Control and Communication Model</td>
<td>217</td>
</tr>
<tr>
<td>8.2.2</td>
<td>Converse Theorem on Stochastic Stability Over a Discrete Memoryless Channel</td>
<td>218</td>
</tr>
<tr>
<td>8.3</td>
<td>Stochastic Stabilization Over Erasure Channels with Feedback</td>
<td>219</td>
</tr>
<tr>
<td>8.3.1</td>
<td>Connections with Random-time Drift Criteria</td>
<td>223</td>
</tr>
<tr>
<td>8.3.2</td>
<td>Simulation</td>
<td>224</td>
</tr>
<tr>
<td>8.4</td>
<td>Stochastic Stabilization Over DMCs with Feedback</td>
<td>225</td>
</tr>
<tr>
<td>8.5</td>
<td>Channels with Memory and Multidimensional Sources</td>
<td>230</td>
</tr>
<tr>
<td>8.6</td>
<td>Stabilization with Noisy Forward and Feedback/Reverse Channels</td>
<td>233</td>
</tr>
<tr>
<td>8.6.1</td>
<td>Formulation</td>
<td>233</td>
</tr>
<tr>
<td>8.6.2</td>
<td>Necessary Conditions for Stabilization</td>
<td>235</td>
</tr>
<tr>
<td>8.6.3</td>
<td>Stabilization Over Discrete Channels and State-dependent Sampling</td>
<td>237</td>
</tr>
<tr>
<td>8.6.4</td>
<td>Stabilization Over Continuous-Alphabet Channels</td>
<td>243</td>
</tr>
<tr>
<td>8.7</td>
<td>Appendix: Proofs</td>
<td>245</td>
</tr>
<tr>
<td>8.7.1</td>
<td>Proof of Theorem 8.5.2</td>
<td>245</td>
</tr>
<tr>
<td>8.7.2</td>
<td>Proof of Proposition 8.5.1</td>
<td>246</td>
</tr>
<tr>
<td>8.7.3</td>
<td>Proof of Proposition 8.5.3</td>
<td>249</td>
</tr>
<tr>
<td>8.7.4</td>
<td>Proof of Proposition 8.3.1</td>
<td>249</td>
</tr>
<tr>
<td>8.7.5</td>
<td>Proof of Theorem 8.3.1</td>
<td>255</td>
</tr>
<tr>
<td>8.7.6</td>
<td>Proof of Theorem 8.3.3</td>
<td>257</td>
</tr>
<tr>
<td>8.7.7</td>
<td>Proof of Theorem 8.4.1</td>
<td>259</td>
</tr>
<tr>
<td>8.7.8</td>
<td>Proof of Theorem 8.4.2</td>
<td>269</td>
</tr>
<tr>
<td>8.7.9</td>
<td>Proof of Theorem 8.4.3</td>
<td>270</td>
</tr>
<tr>
<td>8.7.10</td>
<td>Proof of Theorem 8.4.4</td>
<td>271</td>
</tr>
<tr>
<td>8.7.11</td>
<td>Proof of Theorem 8.4.5</td>
<td>276</td>
</tr>
<tr>
<td>8.7.12</td>
<td>Proof of Theorem 8.5.4</td>
<td>276</td>
</tr>
</tbody>
</table>
Stabilization of Decentralized Systems

Over Communication Channels

Introduction
Problem Formulation
Existence of Decentralized Stabilizing Controllers and Time-Varying Linear Feedback Laws
Decentralized Stabilization over Communication Channels
Multi-Sensor Structure with a Centralized Controller
Multi-Sensor and Multi-Controller Systems Driven by Noise
Multi-Sensor Systems Driven by Unbounded Noise
Multi-Controller Systems Driven by Unbounded Noise
Illustration of Binning and Its Use in Decentralized Stabilization
Appendix: Proofs
A Supporting Lemma
Proof of Theorem 9.4.1
Proof of Lemma 9.4.1
Proof of Lemma 9.4.2
Concluding Remarks
Bibliographic Notes

Optimization of Real-Time Coding and Control Policies:
Structural and Existence Results
Introduction
Policies and Action Spaces for Encoding
Single Terminal Case: Optimal Causal Coding of a Partially Observed Markov Source
Single Terminal, Fully Observed Case
Partially Observed Markov Source
Structural Results for Systems with Control

Optimization in Networked Control: Design of Optimal Policies Under Information Constraints

Introductions
Policies and Action Spaces for Encoding
Single Terminal Case: Optimal Causal Coding
Single Terminal, Fully Observed Case
Partially Observed Markov Source
Structural Results for Systems with Control
10.4 Existence of Optimal Zero-Delay Quantizers 327
10.5 Multiterminal (Decentralized) Setting 329
 10.5.1 Memoryless Sources 329
 10.5.2 Markov Sources: Nonclassical Information
 Structure and a Counterexample Under Signaling 330
10.6 Simultaneous Optimization of LQG Coding
 and Control Policies: Optimal Quantization and Control 332
 10.6.1 Application to the LQG Setup: Separation
 of Estimation and Quantization 333
 10.6.2 Optimal LQG Coding and Control Policies
 and Separation Results 334
 10.6.3 Existence of Optimal Quantization Policies 338
 10.6.4 Partially Observed Case 339
10.7 Case with Noisy Channels and Noiseless Feedback 341
10.8 Appendix: Proofs .. 342
 10.8.1 Proof of Theorem 10.3.1 342
 10.8.2 Proof of Theorem 10.3.2 344
 10.8.3 Proof of Theorem 10.3.3 347
 10.8.4 Proof of Theorem 10.3.4 350
 10.8.5 Proof of Theorem 10.3.6 352
 10.8.6 Proof of Theorem 10.4.2 353
 10.8.7 Proof of Theorem 10.5.1 359
 10.8.8 Proof of Lemma 10.6.1 363
 10.8.9 Proof of Theorem 10.6.3 364
 10.8.10 Proof of Theorem 10.6.4 366
10.9 Concluding Remarks .. 369
10.10 Bibliographic Notes .. 369

11 Optimal Coding and Control for Linear Gaussian Systems
 Over Gaussian Channels Under Quadratic Cost 373
11.1 Introduction .. 373
11.2 Gaussian Source-Channel Pairs and Optimality
 of Linear Policies .. 374
 11.2.1 Optimality of Linear Coding Policies
 over a Gaussian Channel with Matching
 Between the Source and the Channel 374
 11.2.2 The Gaussian Pair: Gaussian Sources and Channels ... 375
 11.2.3 Multi-Dimensional Source and Channels 376
11.3 Joint Optimization of Encoder and Controllers for
 Linear Systems Controlled Over Gaussian Channels 377
 11.3.1 Problem Setup 377
 11.3.2 Optimality of Linear Policies 379
11.4 Stabilization over Gaussian Channels and Sufficiency
 of Shannon Capacity Conditions 382
11.5 Two Counterexamples on Sub-optimality of Linear Policies 385
11.5.1 Gaussian Relay Channels with Two
Encoders: Person-by-Person-Optimality
of Linear Policies and Lack of Convexity
of the Team Problem 385
11.5.2 A Decentralized Sensing Problem Over
Vector Gaussian Channels 387
11.6 Looseness of Information Theoretic (Cut-Set) Bounds
for Gaussian Networks 389
11.7 Appendix: Proofs ... 390
11.7.1 Proof of Theorem 11.3.1 390
11.7.2 Proof of Theorem 11.3.2 391
11.7.3 Proof of Theorem 11.5.1 394
11.8 Concluding Remarks 396
11.9 Bibliographic Notes 396
12 Agreement in Teams and the Dynamic Programming
Approach Under Information Constraints 399
12.1 Introduction ... 399
12.2 Common Knowledge and Agreement 400
12.2.1 Common Knowledge 400
12.2.2 Asymptotic Agreement with Common
Priors but Different Posteriors 401
12.2.3 Inconsistent Priors (Probability Models),
Lack of Agreement and Merging 402
12.2.4 Agreement in Finite Time Over Noisy Channels 404
12.3 Common Knowledge as Information State
and the Dynamic Programming Approach
to Team Decision Problems 405
12.4 \(k\)-Stage Periodic Belief Sharing Pattern
and Communication Requirements 406
12.4.1 \(k\)-Stage Periodic Belief Sharing Pattern 406
12.4.2 Minimum Communication for the Belief
Sharing Pattern .. 412
12.5 A Team Cost-Rate Function 416
12.6 Concluding Remarks 419
12.7 Bibliographic Notes 419

A Topological Notions and Optimization 423
A.1 Sets ... 423
A.2 Vector Spaces .. 424
A.3 Matrices .. 429
A.4 Convex Sets and Functionals 430
A.5 Optimization of Functionals 431
A.6 Contraction Mappings and Fixed-Point Theorems 433
B Probability Theory and Stochastic Processes .. 435
 B.1 Probability ... 435
 B.1.1 Measurable Spaces .. 435
 B.1.2 Integration .. 437
 B.1.3 Probability Spaces and Random Variables 438
 B.2 Convergence of Probability Measures 441
 B.3 Conditional Expectation and Estimation 443
 B.4 Stochastic Processes .. 444

C Markov Chains, Martingales, and Ergodic Processes 447
 C.1 Markov Chains ... 447
 C.2 Discrete-Time Martingales .. 451
 C.3 Stochastic Stability of Dynamical Systems and Random Processes ... 452
 C.3.1 Stationary, Ergodic, and Asymptotically Mean Stationary Processes ... 452

D Markov Decision Theory and Optimality of Markov Policies 455
 D.1 Controlled Markov Models ... 455
 D.1.1 Fully Observed Markov Control Problem Model 455
 D.1.2 Classes of Control Policies ... 456
 D.1.3 Optimality of Markov Policies and Elimination of Irrelevant Information .. 457
 D.1.4 Markov Decision Processes (MDPs) and Optimality of Markov Policies .. 457
 D.1.5 Dynamic Programming and Measurable Selection Criteria .. 458
 D.1.6 Partially Observable MDPs (POMDPs) 459
 D.2 Kalman Filter and Linear-Quadratic-Gaussian Optimal Control Problem .. 460

References .. 463

Index .. 481
Stochastic Networked Control Systems
Stabilization and Optimization under Information Constraints
Yüksel, S.; Başar, T.
2013, XVIII, 482 p., Hardcover
ISBN: 978-1-4614-7084-7
A product of Birkhäuser Basel