Our goal in writing this book has been to provide a comprehensive, mathematically rigorous, but still accessible treatment of the interaction between information and control in multi-agent decision making in the context of networked control systems. These are systems where different decision units (or equivalently decision makers or agents, which could be sensors, controllers, encoders, or decoders) are connected over a real-time communication network, where the communication medium is heterogeneous, information is decentralized and distributed, and its acquisition is not instantaneous. The questions we address are all performance driven, and entail the issues of what data to pick and how to shape and transmit them for control purposes under various resource constraints as well as how to design optimal control policies with partial information. We deal specifically with the issues of quantization and encoding, design of optimum channels, effects of decentralization on control performance, stability, learning, signaling, and relationships between team performance (of a group of agents) and various information structures.

The book draws and utilizes a diverse set of tools (of both conceptual and analytical nature) from various disciplines, including stochastic control, stochastic teams, information theory, probability theory and stochastic processes, and source-coding and channel-coding theory, and amalgamates them into a unified, coherent, applicable theory. It could be used as a textbook or as an accompanying text in a graduate course on networked control or multi-agent decision making under informational constraints.

Acknowledgements We would like to thank several individuals whose work, either independently or through collaboration, has shaped the contents of the book. Of particular mention are Tamás Linder (Chaps. 4 and 10); Sean Meyn (Chaps. 6 and 8); Andrew Johnston (Chaps. 7 and 9); Sekhar Tatikonda (Chap. 11); Ali Zaidi, Tobias Oechtering, and Mikael Skoglund (Chap. 11); and Aditya Mahajan, Giacomo Como, and Nuno C. Martins, general collaborations with whom have been reflected in the book.

Abhishek Gupta, Andrew Johnston, Naci Saldi, Charalampos Charalambous, Maxim Raginsky, Emrah Akyol, and Daniel Quevedo read different versions of the book and provided substantial technical comments which this final version has greatly benefitted from.
The book has also benefitted from technical discussions with many of our colleagues and students, including Nevroz Şen, Marcos M. Vasconcelos, Debashish Chatterjee, Ather Gattami, Yücel Altuğ, Orhan Arikan, Demos Teneketzis, Alexander Condello, Adina Goldberg, Anant Sahai, Gürdal Arslan, R. Srikant, Chris Hadjicostis, Venu Veeravalli, Cédric Langbort, Todd Coleman, Orhan Çağrı Imer, Atilla Eryilmaz, Akshay Kashyap, Tansu Alpcan, Abdol-Reza Mansouri, Andrew Lewis, and Fady Alajaji, to whom we also convey our thanks.

An earlier version of the book was used in an intensive course offered by one of us (S.Y.) at KTH, Stockholm, and the discussions there also helped shape this final version. We thank the hosts, Tobias Oechtering, Mikael Skoglund, and Ali Zaidi, for providing this opportunity.

Finally, we acknowledge the stimulating, conducive environment of the Coordinated Science Laboratory, University of Illinois, where the initial seeds of this book project were sown. The bulk of the work was carried out after the first author joined Queen’s University, which provided another stimulating environment for the project to be completed. We thank both institutions and many of our colleagues there.

Kingston, ON

Urbana, IL

Serdar Yüksel

Tamer Başar
Stochastic Networked Control Systems
Stabilization and Optimization under Information Constraints
Yüksel, S.; Başar, T.
2013, XVIII, 482 p., Hardcover
ISBN: 978-1-4614-7084-7
A product of Birkhäuser Basel