1 The Design of Manufacturing Systems to Cope with Variability 1
John A. Buzacott
1.1 Introduction .. 1
1.2 Manufacturing Needs Dedicated Problem Solvers 2
1.3 Manufacturing Systems 3
 1.3.1 Job Shops 4
 1.3.2 Flow Lines 10
1.4 Improving on the Job Shop and the Flow Line 16
 1.4.1 Flexible Manufacturing Systems (FMS) 17
 1.4.2 Central Storage and Dispatch 20
 1.4.3 Cells and Teams 22
1.5 Conclusions .. 25
References ... 27

2 Modeling Automated Warehouses Using Semi-Open Queueing Networks 29
Xiao Cai, Sunderesh S. Heragu, and Yang Liu
2.1 Introduction .. 29
2.2 SOQN Notation ... 33
2.3 Single-Class SOQN with Two Stages of Exponential Servers and Poisson Arrivals 33
 2.3.1 State Space Solution 33
 2.3.2 Matrix Geometric Method Solution 37
 2.3.3 Numerical Example 1 41
2.4 Single-Class SOQN with Multiple Stages of Exponential Servers and Poisson Arrivals 42
 2.4.1 Decomposition-Aggregation Method 42
 2.4.2 Numerical Example 2 43
2.5 Phase-Type Distribution 44
 2.5.1 Definition .. 44
 2.5.2 Closure Properties and Kronecker Product 47
2.6 Single-Class SOQN with Two Stages of General Servers and General Arrival 51
2.6.1 State Space Analysis 51
2.6.2 Numerical Example 3 54
2.6.3 Multiple Servers .. 55
2.6.4 Numerical Example 4 59
2.7 Single-Class SOQN with Multiple Stages of General Servers and General Arrival 60
2.7.1 Modified Decomposition-Aggregation Method 60
2.7.2 Numerical Example 5 60
2.8 Multi-Class SOQN with Multiple Stages of General Servers and General Arrivals 62
2.8.1 Aggregation Method .. 62
2.8.2 Numerical Example 6 64
2.9 Conclusions .. 67
References .. 70

3 Exact Analysis of Discrete Part Production Lines: The Markovian Queueing Network and the Stochastic Automata Networks Formalisms .. 73
P. Fernandes, M.E.J. O’Kelly, C.T. Papadopoulos, and A. Sales
3.1 Introduction and Literature Review 73
3.2 The Markovian Formalism 76
3.2.1 The Algorithm for the Generation of the Conservative Matrix A for K-Station Reliable Exponential Production Lines with Inter-station Buffers 80
3.2.2 The Queueing Network Model of a Three-Station Reliable Exponential Production Line 87
3.3 The Stochastic Automata Networks Formalism (SAN) 90
3.3.1 Definitions and Properties of Classical Tensor Algebra (CTA) and Generalized Tensor Algebra (GTA) 91
3.3.2 Definition of Kronecker Descriptors Using Tensor Algebra ... 96
3.3.3 The Equivalent SAN Model to the Queueing Network Model of the Three-Station Line 97
3.4 Software Tools and Results 102
3.4.1 Numerical Results ... 103
3.5 Conclusions .. 104
References .. 110

4 Models of Leveling for Lean Manufacturing Systems 115
Kai Furmans and Martin Veit
4.1 Stochastic Models for Lean Manufacturing Systems 115
4.2 System Description and Single Stage Model 118
4.2.1 Performance Measure Calculation by Variable Interval Model .. 118
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Start Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.4.4</td>
<td>Monotonicity</td>
<td>182</td>
</tr>
<tr>
<td>6.4.5</td>
<td>Improvability</td>
<td>184</td>
</tr>
<tr>
<td>6.5</td>
<td>Bottleneck</td>
<td>187</td>
</tr>
<tr>
<td>6.5.1</td>
<td>Definition</td>
<td>187</td>
</tr>
<tr>
<td>6.5.2</td>
<td>Identification</td>
<td>188</td>
</tr>
<tr>
<td>6.5.3</td>
<td>Buffering Potency</td>
<td>190</td>
</tr>
<tr>
<td>6.6</td>
<td>Leanness</td>
<td>191</td>
</tr>
<tr>
<td>6.6.1</td>
<td>Definition</td>
<td>191</td>
</tr>
<tr>
<td>6.6.2</td>
<td>Calculations</td>
<td>192</td>
</tr>
<tr>
<td>6.7</td>
<td>Production Lead Time</td>
<td>194</td>
</tr>
<tr>
<td>6.7.1</td>
<td>Model and Problems</td>
<td>195</td>
</tr>
<tr>
<td>6.7.2</td>
<td>Identical Machines Case</td>
<td>195</td>
</tr>
<tr>
<td>6.7.3</td>
<td>Non-identical Machines Case</td>
<td>198</td>
</tr>
<tr>
<td>6.8</td>
<td>Re-entrant Lines</td>
<td>199</td>
</tr>
<tr>
<td>6.8.1</td>
<td>Model, Equations, and Problems</td>
<td>200</td>
</tr>
<tr>
<td>6.8.2</td>
<td>Equilibria and Stability</td>
<td>202</td>
</tr>
<tr>
<td>6.8.3</td>
<td>Transients</td>
<td>203</td>
</tr>
<tr>
<td>6.9</td>
<td>Conclusion and Future Work</td>
<td>206</td>
</tr>
</tbody>
</table>

References | 208

7 Production Release Control: Paced, WIP-Based or Demand-Driven? Revisiting the Push/Pull and Make-to-Order/Make-to-Stock Distinctions | 211
George Liberopoulos
7.1 Introduction | 211
7.2 Production Control in the Absence of Demands | 215
7.2.1 System Without WIP Control | 215
7.2.2 Systems with WIP Control | 217
7.3 Production Control in the Presence of Demands | 223
7.3.1 System Without WIP Control in the Presence of Demands | 223
7.3.2 Systems with WIP Control in the Presence of Demands | 228
7.4 Production Control with Advance Demand Information and Forecasts | 238
7.4.1 Systems with Advance Demand Information | 238
7.4.2 Production Control Systems with Forecasts | 241
7.5 Conclusions | 244
References | 245

8 Queueing Network Models of Material Handling and Transportation Systems | 249
J. MacGregor Smith
8.1 Motivation | 249
8.1.1 Problem | 249
8.1.2 Outline of Chapter | 250
8.2 Problem Background

- 8.2.1 Transporters .. 253
- 8.2.2 Conveyors .. 253
- 8.2.3 Restricted Area units ... 255
- 8.2.4 Literature Review ... 255
- 8.2.5 Material Systems ... 255
- 8.2.6 Material Handling Systems 256

8.3 Mathematical Models

- 8.3.1 Notation ... 258
- 8.3.2 State Dependent Models 259
- 8.3.3 $M/G/c/e$ Probability Distribution 261

8.4 Product Form Algorithms

- 8.4.1 Product Form Networks 264
- 8.4.2 Open Networks .. 265
- 8.4.3 Closed Networks .. 271
- 8.4.4 Engset Loss Networks .. 272
- 8.4.5 Mixed Networks ... 274

8.5 Optimization Problems

- 8.5.1 Optimal Topology Problems (OTOP) 278
- 8.5.2 Optimal Routing Problems (ORTE) 279
- 8.5.3 Optimal Resource Allocation Problems (ORAP) 279

8.6 Summary and Conclusions

References ... 283

9 Modeling and Analysis of Output Variability in Discrete Material Flow Production Systems

Barış Tan

- 9.1 Introduction ... 287
- 9.1.1 Literature Review ... 288

9.2 Performance Measures

- 9.2.1 Number of Parts Produced 291
- 9.2.2 Time to Produce a Given Order 291
- 9.2.3 Probability of Completing an Order on Time 292
- 9.2.4 State-Space Model .. 293

9.3 Asymptotic Variance Rate of Output: V

- 9.3.1 Asymptotic Variance Rate of Output from Production Lines with No Interstation Buffers 294
- 9.3.2 Asymptotic Variance Rate of Output from Production Systems with Finite Buffers 298

9.4 Variance of the Number of Products Produced in a Given Time Period: $\text{var}[N(t)]$

- 9.4.1 Determining the Variance Rate of the Output from the Probability Matrix ... 302
- 9.4.2 Variance Rate of the Output from a Two-Machine Line with a Finite Buffer 303
10 Stochastic Lot Sizing Problems .. 313
Horst Tempelmeier
10.1 Introduction .. 313
10.2 Stochastic Dynamic Single-Item Lot Sizing Models 318
 10.2.1 Static Uncertainty Strategy: Fixed Replenishment
 Periods, Fixed Lot Sizes 320
 10.2.2 Fixed Replenishment Periods, Variable Lot Sizes ... 332
10.3 Stochastic Dynamic Multi-item Capacitated Lot Sizing Models ... 336
 10.3.1 Solution Approaches 338
10.4 Concluding Remarks 342
References .. 343

11 From Operational to Financial Evaluation of Manufacturing Systems 345
Nico J. Vandaele
11.1 Introduction .. 345
11.2 Literature Review ... 346
 11.2.1 Operational Evaluation 347
 11.2.2 Financial Evaluation 347
 11.2.3 Market Effects of Shorter Lead Time 349
11.3 Maximizing Profit Within an Integrated Queueing Model 349
 11.3.1 The Queueing Model Incorporating Lot Sizing 350
 11.3.2 The Queueing Model Incorporating Overtime ... 351
 11.3.3 Operational Constraints 352
 11.3.4 Objective Function in Terms of Profit 352
 11.3.5 The Demand Side: Sales Price as a Function
 of The Lead Time 356
 11.3.6 The Complete Model 357
11.4 Numerical Examples 358
 11.4.1 Managerial Decision Making Based on Economic
 Value Added ... 358
 11.4.2 Analysis of Demand Sensitivity 360
 11.4.3 Analysis of a Multi-product, Multi-machine Example .. 361
11.5 Conclusions ... 365
Appendix .. 365
References .. 366

Index ... 369