Contents

1 Introduction .. 1
 1.1 3D-Video Applications ... 2
 1.2 Requirements and Trends of 3D Multimedia .. 3
 1.3 Overview on Multimedia Embedded Systems 5
 1.4 Issues and Challenges ... 6
 1.5 Monograph Contribution .. 7
 1.5.1 3D-Neighborhood Correlation Analysis 7
 1.5.2 Energy-Efficient MVC Algorithms .. 8
 1.5.3 Energy-Efficient Hardware Architectures 9
 1.6 Monograph Outline .. 9

2 Background and Related Works ... 11
 2.1 2D/3D Digital Videos .. 11
 2.2 Multiview Correlation Domains .. 14
 2.2.1 Spatial Domain Correlation .. 14
 2.2.2 Temporal Domain Correlation .. 15
 2.2.3 Disparity Domain Correlation .. 16
 2.3 Multiview Video Coding .. 16
 2.3.1 MVC Encoding Process ... 18
 2.3.2 Motion and Disparity Estimation ... 22
 2.3.3 MVC Mode Decision .. 27
 2.3.4 MVC Rate Control ... 28
 2.4 3D-Video Systems .. 29
 2.5 Multimedia Architectures Overview ... 30
 2.5.1 Multimedia Processors/DSPs ... 30
 2.5.2 Reconfigurable Processors for Video Processing 31
 2.5.3 Application-Specific Integrated Circuits 32
 2.5.4 Heterogeneous Multicore SoCs ... 33
2.6 Energy-Efficient Architectures for Multimedia Processing ... 33
 2.6.1 Video Memories ... 34
 2.6.2 SRAM Dynamic Voltage-Scaling Infrastructure ... 34
 2.6.3 Dynamic Power Management for Memories .. 35
 2.6.4 Energy Management for Multimedia Systems ... 36
 2.6.5 Energy-Efficient Video Architectures .. 37

2.7 Energy/Power Consumption Background .. 38

2.8 Energy-Efficient Algorithms for Multiview Video Coding .. 39
 2.8.1 Energy-Efficient Mode Decision ... 40
 2.8.2 Energy-Efficient Motion and Disparity Estimation ... 42

2.9 Video Quality on Energy-Efficient Multiview Video Coding ... 45
 2.9.1 Control Techniques Background ... 46

2.10 Summary of Background and Related Works ... 50

3 Multiview Video Coding Analysis for Energy and Quality ... 53
 3.1 Energy Requirements for Multiview Video Coding ... 53
 3.1.1 MVC Computational Effort .. 57
 3.1.2 MVC Memory Access ... 59
 3.1.3 Adaptivity in MVC Video Encoder .. 60
 3.2 Energy-Related Challenges in Multiview Video Coding .. 62
 3.3 Objective Quality Analysis for Multiview Video Coding .. 63
 3.4 Quality-Related Challenges in Multiview Video Coding ... 65
 3.5 Overview of Proposed Energy-Efficient Algorithms and Architectures for Multiview Video Coding .. 66
 3.5.1 3D-Neighborhood ... 67
 3.5.2 Energy-Efficient Algorithms ... 68
 3.5.3 Energy-Efficient Architectures ... 69
 3.6 Summary of Application Analysis for Energy and Quality ... 71

4 Energy-Efficient Algorithms for Multiview Video Coding ... 73
 4.1 3D-Neighborhood Correlation Analysis .. 74
 4.1.1 Coding Mode Correlation Analysis .. 74
 4.1.2 Motion Correlation Analysis .. 82
 4.1.3 Bitrate Correlation Analysis .. 84
 4.2 Thresholds ... 87
 4.3 Multilevel Mode Decision-based Complexity Adaptation ... 90
 4.3.1 Multilevel Fast Mode Decision ... 90
 4.3.2 Energy-Aware Complexity Adaptation .. 95
 4.3.3 Multilevel Fast Mode Results .. 100
 4.3.4 Energy-Aware Complexity Adaptation Results ... 105
 4.4 Fast Motion and Disparity Estimation .. 107
 4.4.1 Fast Motion and Disparity Estimation Algorithm .. 107
 4.4.2 Fast ME/DE Algorithm Results .. 109
4.5 Video-Quality Management for Energy-Efficient Algorithms...... 111
 4.5.1 Hierarchical Rate Control for MVC................................. 111
 4.5.2 Frame-Level Rate Control.. 113
 4.5.3 Basic Unit-Level Rate Control.. 119
 4.5.4 Hierarchical Rate Control Results.................................. 121
4.6 Summary of Energy-Efficient Algorithms
 for Multiview Video Coding .. 126

5 Energy-Efficient Architectures for Multiview Video Coding 127
 5.1 Motion and Disparity Estimation Hardware Architecture 127
 5.1.1 SAD Calculator .. 130
 5.1.2 Programmable Search Control Unit 131
 5.1.3 On-Chip Video Memory.. 133
 5.1.4 Address Generation Unit.. 134
 5.2 Parallelism in the MVC Encoder and ME/DE Scheduling 136
 5.2.1 Parallelism in the MVC Encoder.................................... 136
 5.2.2 ME/DE Hardware Architecture Pipeline Scheduling......... 137
 5.3 Dynamic Search Window Formation...................................... 140
 5.3.1 ME/DE Memory Access Pattern Analysis 140
 5.3.2 Search Map Prediction.. 142
 5.3.3 Dynamic Search Window Formation............................... 143
 5.4 On-Chip Video Memory... 145
 5.4.1 On-Chip Memory Design.. 145
 5.4.2 Application-Aware Power Gating................................... 146
 5.5 Hardware Architecture Evaluation...................................... 148
 5.5.1 Dynamic Window Formation Accuracy............................ 148
 5.5.2 Hardware Architecture Evaluation................................. 148
 5.6 Summary of Energy-Efficient Algorithms
 for Multiview Video Coding .. 150

6 Results and Comparison .. 151
 6.1 Experimental Setup.. 151
 6.1.1 Software Simulation Environment 151
 6.1.2 Benchmark Video Sequences.. 152
 6.1.3 Fairness of Comparison.. 155
 6.1.4 Hardware Description and ASIC Synthesis 155
 6.2 Comparison with the State of the Art.................................. 156
 6.2.1 Energy-Efficient Algorithms....................................... 156
 6.2.2 Video Quality Control Algorithms............................... 161
 6.2.3 Energy-Efficient Hardware Architectures....................... 163
 6.3 Summary of Results and Comparison................................... 166
7 Conclusion and Future Works ... 169
 7.1 Future Works .. 171
 7.1.1 Remaining MVC Challenges .. 172
 7.1.2 3D-Video Pre- and Post-processing ... 172
 7.1.3 Next-Generation 3D-Video Coding .. 172

Appendix A: JMVC Simulation Environment .. 175
 A.1 JMVC Encoder Overview ... 175
 A.2 Modifications to the JMVC Encoder .. 178
 A.2.1 JMVC Encoder Tracing ... 178
 A.2.2 Communication Channels in JMVC .. 178
 A.2.3 Mode Decision Modification in JMVC ... 179
 A.2.4 ME/DE Modification in JMVC .. 179
 A.2.5 Rate Control Modification in JMVC .. 179

Appendix B: Memory Access Analyzer Tool ... 181
 B.1 Current Macroblock-Based Analysis ... 182
 B.2 Search Window-Based Analysis .. 182

Appendix C: CES Video Analyzer Tool .. 185

References ... 189

Index ... 199
3D Video Coding for Embedded Devices
Energy Efficient Algorithms and Architectures
Zatt, B.; Shafique, M.; Bampi, S.; Henkel, J.
2013, XIX, 204 p. 126 illus., 112 illus. in color., Hardcover
ISBN: 978-1-4614-6758-8