Contents

Part I Introduction and Descriptive Statistics

1 Introduction ... 3
 1.1 The Role of Statistics in Business and Economics 3
 1.2 Descriptive Versus Inferential Statistics 5
 1.3 Deductive Versus Inductive Analysis in Statistics 10
 1.4 Summary ... 10
Questions and Problems .. 11

2 Data Collection and Presentation 15
 2.1 Introduction .. 16
 2.2 Data Collection .. 16
 2.3 Data Presentation: Tables 19
 2.4 Data Presentation: Charts and Graphs 19
 2.5 Applications ... 24
 2.6 Summary ... 30
Questions and Problems .. 30
Appendix 1: Using Microsoft Excel to Draw Graphs 45
Appendix 2: Stock Rates of Return and Market Rates of Return ... 47
Appendix 3: Financial Statements and Financial Ratio Analysis 51

3 Frequency Distributions and Data Analyses 65
 3.1 Introduction ... 65
 3.2 Tally Table for Constructing a Frequency Table 66
 3.3 Three Other Frequency Tables 70
 3.4 Graphical Presentation of Frequency Distribution 72
 3.4.1 Histograms ... 72
 3.4.2 Stem-and-Leaf Display 76
 3.4.3 Frequency Polygon 80
 3.4.4 Pie Chart .. 81
3.5 Further Economic and Business Applications
 3.5.1 Lorenz Curve
 3.5.2 Stock and Market Rate of Return
 3.5.3 Interest Rates
 3.5.4 Quality Control
3.6 Summary
Questions and Problems

4 Numerical Summary Measures
 4.1 Introduction
 4.2 Measures of Central Tendency
 4.2.1 The Arithmetic Mean
 4.2.2 The Geometric Mean
 4.2.3 The Median
 4.2.4 The Mode
 4.3 Measures of Dispersion
 4.3.1 The Variance and the Standard Deviation
 4.3.2 The Mean Absolute Deviation
 4.3.3 The Range
 4.3.4 The Coefficient of Variation
 4.4 Measures of Relative Position
 4.4.1 Percentiles, Quartiles, and Interquartile Range
 4.4.2 Box and Whisker Plots: Graphical Descriptions Based on Quartiles
 4.4.3 Z Scores
 4.5 Measures of Shape
 4.5.1 Skewness
 4.5.2 Kurtosis
 4.6 Calculating Certain Summary Measures from Grouped Data (Optional)
 4.6.1 The Mean
 4.6.2 The Median
 4.6.3 The Mode
 4.6.4 Variance and Standard Deviation
 4.6.5 Percentiles
 4.7 Applications
 4.8 Summary
Questions and Problems
Project I: Project for Descriptive Statistics
Appendix 1: Shortcut Formulas for Calculating Variance and Standard Deviation
Appendix 2: Shortcut Formulas for Calculating Group Variance and Standard Deviation
Appendix 3: Financial Ratio Analysis for Two Pharmaceutical Firms
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.6 The Hypergeometric Distribution (Optional)</td>
<td>229</td>
</tr>
<tr>
<td>6.6.1 The Hypergeometric Formula</td>
<td>230</td>
</tr>
<tr>
<td>6.6.2 Mean and Variance</td>
<td>231</td>
</tr>
<tr>
<td>6.7 The Poisson Distribution and Its Approximation to the Binomial</td>
<td>232</td>
</tr>
<tr>
<td>Distribution</td>
<td></td>
</tr>
<tr>
<td>6.7.1 The Poisson Distribution</td>
<td>233</td>
</tr>
<tr>
<td>6.7.2 The Poisson Approximation to the Binomial Distribution</td>
<td>235</td>
</tr>
<tr>
<td>6.8 Jointly Distributed Discrete Random Variables (Optional)</td>
<td>237</td>
</tr>
<tr>
<td>6.8.1 Joint Probability Function</td>
<td>237</td>
</tr>
<tr>
<td>6.8.2 Marginal Probability Function</td>
<td>238</td>
</tr>
<tr>
<td>6.8.3 Conditional Probability Function</td>
<td>239</td>
</tr>
<tr>
<td>6.8.4 Independence</td>
<td>240</td>
</tr>
<tr>
<td>6.9 Expected Value and Variance of the Sum of Random Variables (Optional)</td>
<td>242</td>
</tr>
<tr>
<td>6.9.1 Covariance and Coefficient of Correlation Between Two Random Variables</td>
<td>242</td>
</tr>
<tr>
<td>6.9.2 Expected Value and Variance of the Summation of Random Variables X and Y</td>
<td>244</td>
</tr>
<tr>
<td>6.9.3 Expected Value and Variance of Sums of Random Variables</td>
<td>247</td>
</tr>
<tr>
<td>6.10 Summary</td>
<td>250</td>
</tr>
<tr>
<td>Questions and Problems</td>
<td>250</td>
</tr>
<tr>
<td>Appendix 1: The Mean and Variance of the Binomial Distribution</td>
<td>259</td>
</tr>
<tr>
<td>Appendix 2: Applications of the Binomial Distribution to Evaluate</td>
<td>260</td>
</tr>
<tr>
<td>Call Options</td>
<td></td>
</tr>
<tr>
<td>7 The Normal and Lognormal Distributions</td>
<td>271</td>
</tr>
<tr>
<td>7.1 Introduction</td>
<td>271</td>
</tr>
<tr>
<td>7.2 Probability Distributions for Continuous Random Variables</td>
<td>272</td>
</tr>
<tr>
<td>7.2.1 Continuous Random Variables</td>
<td>272</td>
</tr>
<tr>
<td>7.2.2 Probability Distribution Functions for Discrete and Continuous Random Variables</td>
<td>273</td>
</tr>
<tr>
<td>7.3 The Normal and Standard Normal Distribution</td>
<td>278</td>
</tr>
<tr>
<td>7.3.1 The Normal Distribution</td>
<td>278</td>
</tr>
<tr>
<td>7.3.2 Areas Under the Normal Curve</td>
<td>279</td>
</tr>
<tr>
<td>7.3.3 How to Use the Normal Area Table</td>
<td>282</td>
</tr>
<tr>
<td>7.4 The Lognormal Distribution and Its Relationship to the Normal</td>
<td>286</td>
</tr>
<tr>
<td>Distribution (Optional)</td>
<td>286</td>
</tr>
<tr>
<td>7.4.1 The Lognormal Distribution</td>
<td>286</td>
</tr>
<tr>
<td>7.4.2 Mean and Variance of Lognormal Distribution</td>
<td>286</td>
</tr>
<tr>
<td>7.5 The Normal Distribution as an Approximation to the Binomial and</td>
<td>290</td>
</tr>
<tr>
<td>Poisson Distributions</td>
<td></td>
</tr>
</tbody>
</table>
7.5.1 Normal Approximation to the Binomial Distribution .. 290
7.5.2 Normal Approximation to the Poisson Distribution .. 292
7.6 Business Applications ... 293
7.7 Summary ... 303
Questions and Problems ... 304
Appendix 1: Mean and Variance for Continuous Random Variables 315
Appendix 2: Cumulative Normal Distribution Function and the Option Pricing Model .. 321
Appendix 3: Lognormal Distribution Approach to Derive the Option Pricing Model .. 326

8 Sampling and Sampling Distributions .. 331
 8.1 Introduction .. 331
 8.2 Sampling from a Population .. 332
 8.2.1 Sampling Error and Nonsampling Error .. 333
 8.2.2 Selection of a Random Sample .. 334
 8.3 Sampling Cost Versus Sampling Error .. 337
 8.3.1 Sampling Size and Accuracy ... 338
 8.3.2 Time Constraints ... 339
 8.4 Sampling Distribution of the Sample Mean ... 339
 8.4.1 All Possible Random Samples and Their Mean ... 340
 8.4.2 Mean and Variance for a Sample Mean ... 345
 8.4.3 Sample Without Replacement from a Finite Sample 346
 8.5 Sampling Distribution of the Sample Proportion ... 352
 8.6 The Central Limit Theorem .. 354
 8.7 Other Business Applications .. 357
 8.8 Summary ... 360
Questions and Problems ... 360
Appendix 1: Sampling Distribution from a Uniform Population Distribution 373

9 Other Continuous Distributions and Moments for Distributions 381
 9.1 Introduction .. 382
 9.2 The Uniform Distribution .. 382
 9.3 Student’s t Distribution ... 385
 9.4 The Chi-Square Distribution and the Distribution of Sample Variance 388
 9.4.1 The Chi-Square Distribution ... 388
 9.4.2 The Distribution of Sample Variance .. 392
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.5</td>
<td>The F Distribution</td>
<td>393</td>
</tr>
<tr>
<td>9.6</td>
<td>The Exponential Distribution (Optional)</td>
<td>396</td>
</tr>
<tr>
<td>9.7</td>
<td>Moments and Distributions (Optional)</td>
<td>398</td>
</tr>
<tr>
<td>9.7.1</td>
<td>The Second Moment and the Coefficient of Variation</td>
<td>398</td>
</tr>
<tr>
<td>9.7.2</td>
<td>The Third Moment and the Coefficient of Skewness</td>
<td>399</td>
</tr>
<tr>
<td>9.7.3</td>
<td>Kurtosis and the Coefficient of Kurtosis</td>
<td>401</td>
</tr>
<tr>
<td>9.7.4</td>
<td>Skewness and Kurtosis for Normal and Lognormal Distributions</td>
<td>401</td>
</tr>
<tr>
<td>9.8</td>
<td>Analyzing the First Four Moments of Rates of Return of the 30 DJI Firms</td>
<td>403</td>
</tr>
<tr>
<td>9.9</td>
<td>Summary</td>
<td>405</td>
</tr>
<tr>
<td></td>
<td>Questions and Problems</td>
<td>405</td>
</tr>
<tr>
<td></td>
<td>Project II: Project for Probability and Important Distributions</td>
<td>412</td>
</tr>
<tr>
<td></td>
<td>Appendix 1: Derivation of the Mean and Variance for a Uniform Distribution</td>
<td>413</td>
</tr>
<tr>
<td></td>
<td>Appendix 2: Derivation of the Exponential Density Function</td>
<td>415</td>
</tr>
<tr>
<td></td>
<td>Appendix 3: The Relationship Between the Moment About the Origin and the Moment About the Mean</td>
<td>418</td>
</tr>
<tr>
<td></td>
<td>Appendix 4: Derivations of Mean, Variance, Skewness, and Kurtosis for the Lognormal Distribution</td>
<td>418</td>
</tr>
<tr>
<td></td>
<td>Appendix 5: Noncentral (\chi^2) and the Option Pricing Model</td>
<td>420</td>
</tr>
</tbody>
</table>

Part III Statistical Inferences Based on Samples

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Estimation and Statistical Quality Control</td>
<td>425</td>
</tr>
<tr>
<td>10.1</td>
<td>Introduction</td>
<td>426</td>
</tr>
<tr>
<td>10.2</td>
<td>Point Estimation</td>
<td>426</td>
</tr>
<tr>
<td>10.2.1</td>
<td>Point Estimate, Estimator, and Estimation</td>
<td>426</td>
</tr>
<tr>
<td>10.2.2</td>
<td>Four Important Properties of Estimators</td>
<td>428</td>
</tr>
<tr>
<td>10.2.3</td>
<td>Mean Squared Error for Choosing Point Estimator</td>
<td>432</td>
</tr>
<tr>
<td>10.3</td>
<td>Interval Estimation</td>
<td>433</td>
</tr>
<tr>
<td>10.4</td>
<td>Interval Estimates for (\mu) When (\sigma^2) Is Known</td>
<td>434</td>
</tr>
<tr>
<td>10.5</td>
<td>Confidence Intervals for (\mu) When (\sigma^2) Is Unknown</td>
<td>440</td>
</tr>
<tr>
<td>10.6</td>
<td>Confidence Intervals for the Population Proportion</td>
<td>445</td>
</tr>
<tr>
<td>10.7</td>
<td>Confidence Intervals for the Variance</td>
<td>447</td>
</tr>
<tr>
<td>10.8</td>
<td>An Overview of Statistical Quality Control</td>
<td>449</td>
</tr>
<tr>
<td>10.8.1</td>
<td>The Sample Size of an Inspection</td>
<td>450</td>
</tr>
<tr>
<td>10.8.2</td>
<td>Acceptance Sampling and Its Alternative Plans</td>
<td>450</td>
</tr>
<tr>
<td>10.8.3</td>
<td>Process Control</td>
<td>452</td>
</tr>
</tbody>
</table>
10.9 Control Charts for Quality Control .. 452
 10.9.1 \(\bar{X} \)-Chart .. 453
 10.9.2 \(R \)-Chart and \(S \)-Chart ... 456
 10.9.3 Control Charts for Proportions 462
10.10 Further Applications ... 464
10.11 Summary .. 468
Questions and Problems .. 468
Appendix 1: Control Chart Approach for Cash Management 480
Appendix 2: Using MINITAB to Generate Control Charts 483

11 Hypothesis Testing .. 487
11.1 Introduction ... 488
11.2 Concepts and Errors of Hypothesis Testing 488
 11.2.1 Concepts ... 488
 11.2.2 Type I and Type II Errors .. 490
11.3 Hypothesis Test Construction and Testing Procedure 490
 11.3.1 Two Types of Hypothesis Tests 490
 11.3.2 The Trade-off Between Type I
 and Type II Errors .. 493
 11.3.3 The P-Value Approach to Hypothesis Testing 495
11.4 One-Tailed Tests of Means for Large Samples 496
 11.4.1 One-Sample Tests of Means .. 496
 11.4.2 The \(z_\alpha \)-Value Approach 498
 11.4.3 The \(x_\alpha \)-Value Approach 499
 11.4.4 The \(p \)-Value Approach ... 499
 11.4.5 Two-Samples Tests of Means 500
11.5 Two-Tailed Tests of Means for Large Samples 504
 11.5.1 One-Sample Tests of Means .. 504
 11.5.2 Confidence Intervals and Hypothesis Testing 506
 11.5.3 Two-Samples Tests of Means 507
11.6 Small-Sample Tests of Means with Unknown Population
 Standard Deviations ... 509
 11.6.1 One-Sample Tests of Means .. 509
 11.6.2 Two-Samples Tests of Means 510
11.7 Hypothesis Testing for a Population Proportion 513
11.8 Chi-Square Tests of the Variance
 of a Normal Distribution .. 516
11.9 Comparing the Variances of Two Normal Populations 518
11.10 Business Applications ... 518
11.11 Summary .. 523
Questions and Problems .. 524
Appendix 1: The Power of a Test, the Power Function,
 and the Operating-Characteristic Curve 536
12 Analysis of Variance and Chi-Square Tests

12.1 Introduction

12.2 One-Way Analysis of Variance

12.2.1 Defining One-Way ANOVA

12.2.2 Specifying the Hypotheses

12.2.3 Generalizing the One-Way ANOVA

12.2.4 Between-Treatments and Within-Treatment

Sums of Squares

Mean Squares

The Test Statistic

Population Model for One-Way ANOVA

12.3 Simple and Simultaneous Confidence Intervals

12.3.1 Simple Comparison

12.3.2 Scheffe’s Multiple Comparison

12.4 Two-Way ANOVA with One Observation

in Each Cell, Randomized Blocks

12.4.1 Basic Concept

12.4.2 Specifying the Hypotheses

12.4.3 Between and Residual Sum of Squares

12.4.4 Between Variance, Error Variance,

and F-Test

12.4.5 Population Model for Two-Way ANOVA

with One Observation in Each Cell

12.5 Two-Way ANOVA with More than One

Observation in Each Cell

12.5.1 Basic Concept and Hypothesis Testing

12.5.2 Generalizing the Two-Way ANOVA

12.6 Chi-Square as a Test of Goodness of Fit

12.7 Chi-Square as a Test of Independence

12.8 Business Applications

12.9 Summary

Questions and Problems

Project III: Project for Statistical Inferences Based on Samples

Appendix 1: ANOVA and Statistical Quality Control

Part IV Regression and Correlation: Relating Two or More Variables

13 Simple Linear Regression and the Correlation Coefficient

13.1 Introduction

13.2 Population Parameters and the Regression Models

13.2.1 Data Description

13.2.2 Building the Population Regression Model

13.2.3 Sample Versus Population Regression Model
13.3 The Least-Squares Estimation of α and β 622
 13.3.1 Scatter Diagram ... 622
 13.3.2 The Method of Least Squares .. 624
 13.3.3 Estimation of Intercept and Slope ... 625
13.4 Standard Assumptions for Linear Regression 629
13.5 The Standard Error of Estimate and the Coefficient of Determination ... 631
 13.5.1 Variance Decomposition ... 632
 13.5.2 Standard Error of Residuals (Estimate) 635
 13.5.3 The Coefficient of Determination ... 635
13.6 The Bivariate Normal Distribution and Correlation Analysis 636
 13.6.1 The Sample Correlation Coefficient ... 638
 13.6.2 The Relationship Between r and b .. 639
 13.6.3 The Relationship Between r and R^2 639
13.7 Summary .. 646
Questions and Problems .. 646
Appendix 1: Derivation of Normal Equations and Optimal Portfolio Weights .. 659
Appendix 2: The Derivation of Equation 13.20 ... 661
Appendix 3: The Bivariate Normal Density Function 661
Appendix 4: American Call Option and the Bivariate Normal CDF 664

14 Simple Linear Regression and Correlation: Analyses and Applications .. 675
14.1 Introduction ... 675
14.2 Tests of the Significance of α and β .. 676
 14.2.1 Hypothesis Testing and Confidence Interval for β and α 677
 14.2.2 The F-Test Versus the t-Test .. 682
14.3 Test of the Significance of ρ .. 685
 14.3.1 t-Test for Testing $\rho = 0$... 686
 14.3.2 z-Test for Testing $\rho = 0$ or $\rho = \text{Constant}$ 687
14.4 Confidence Interval for the Mean Response and Prediction Interval for the Individual Response 688
 14.4.1 Point Estimates of the Mean Response and the Individual Response .. 688
 14.4.2 Interval Estimates of Forecasts under Three Cases of Estimated Variance 689
 14.4.3 Calculating Standard Errors .. 691
 14.4.4 Confidence Interval for the Mean Response and Prediction Interval for the Individual Response 693
 14.4.5 Using MINITAB to Calculate Confidence Interval and Interval 696
14.5 Business Applications .. 700
14.6 Using Computer Programs to Do Simple Regression Analysis .. 713
14.7 Summary .. 714
Questions and Problems .. 717
Appendix 1: Impact of Measurement Error and Proxy Error on Slope Estimates 734
Appendix 2: The Relationship Between the F-Test and the t-Test 736
Appendix 3: Derivation of Variance for Alternative Forecasts .. 736

15 Multiple Linear Regression .. 739
15.1 Introduction 740
15.2 The Model and Its Assumptions 740
 15.2.1 The Multiple Regression Model 740
 15.2.2 The Regression Plane for Two Explanatory Variables .. 741
 15.2.3 Assumptions for the Multiple Regression Model .. 742
15.3 Estimating Multiple Regression Parameters 744
15.4 The Residual Standard Error and the Coefficient of Determination 747
 15.4.1 The Residual Standard Error 747
 15.4.2 The Coefficient of Determination 748
15.5 Tests on Sets and Individual Regression Coefficients 750
 15.5.1 Test on Sets of Regression Coefficients 750
 15.5.2 Hypothesis Tests for Individual Regression Coefficients 752
15.6 Confidence Interval for the Mean Response and Prediction Interval for the Individual Response 756
 15.6.1 Point Estimates of the Mean and the Individual Responses 756
 15.6.2 Interval Estimates of Forecasts 756
15.7 Business and Economic Applications 759
15.8 Using Computer Programs to Do Multiple Regression Analyses 766
 15.8.1 SAS Program for Multiple Regression Analysis .. 766
 15.8.2 MINITAB Program for Multiple Regression Prediction .. 771
 15.8.3 Stepwise Regression Analysis 772
15.9 Summary .. 776
Questions and Problems .. 777
Appendix 1: Derivation of the Sampling Variance of the Least-Squares Slope Estimations 788
Appendix 2: Derivation of Equation 15.30 791
20 Sampling Surveys: Methods and Applications

20.1 Introduction 1019
20.2 Sampling and Nonsampling Errors 1020
20.3 Simple and Stratified Random Sampling 1021
 20.3.1 Designing the Sampling Study 1021
 20.3.2 Statistical Inferences in Terms of Simple
 Random Sampling 1022
 20.3.3 Stratified Random Sampling 1027
20.4 Determining the Sample Size 1030
 20.4.1 Sample Size for Simple Random Sampling 1030
 20.4.2 Sample Size for Stratified Random Sampling .. 1034
20.5 Two-Stage Cluster Sampling 1036
20.6 Ratio Estimates Versus Regression Estimates 1040
 20.6.1 Ratio Method 1040
 20.6.2 Regression Method 1042
 20.6.3 Comparison of the Ratio and Regression Methods 1043
20.7 Business and Economic Applications 1043
20.8 Summary ... 1046

Questions and Problems 1046

Appendix 1: The Jackknife Method for Removing Bias
 from a Sample Estimate 1059

21 Statistical Decision Theory: Methods and Applications

21.1 Introduction 1066
21.2 Four Key Elements of a Decision 1067
21.3 Decisions Based on Extreme Values 1068
 21.3.1 Maximin Criterion 1068
 21.3.2 Minimax Regret Criterion 1069
21.4 Expected Monetary Value and Utility Analysis 1070
 21.4.1 The Expected Monetary Value Criterion 1071
 21.4.2 Utility Analysis 1073
21.5 Bayes’ Strategies 1078
21.6 Decision Trees and Expected Monetary Values 1080
21.7 Mean and Variance Trade-Off Analysis 1085
 21.7.1 The Mean–Variance Rule and the
 Dominance Principle 1085
 21.7.2 The Capital Market Line 1089
 21.7.3 The Capital Asset Pricing Model 1090
21.8 The Mean and Variance Method for Capital
 Budgeting Decisions 1096
 21.8.1 Statistical Distribution of Cash Flow 1097
21.9 Summary ... 1100

Questions and Problems 1101

Project V: Project for Selected Topics in Statistical Analysis 1115
Appendix A: Statistical Tables
 Table A.1 Probability function of the binomial distribution
 Table A.2 Poisson probabilities
 Table A.3 The standardized normal distribution
 Table A.4 Critical values of t
 Table A.5 Critical values of χ^2
 Table A.6 Critical values of F
 Table A.7 Exponential function
 Table A.8 Random numbers
 Table A.9 Cutoff points for the distribution of the Durbin-Watson test statistics
 Table A.10 Lower and upper critical values R for the runs test
 Table A.11 Critical values of W in the Wilcoxon Matched-Pairs Signed-Rank test
 Table A.12 Lower and upper critical values R_{n_1} and R_{n_2} of the Wilcoxon Rank-Sum test
 Table A.13 Factors for control chart
 Table A.14 Present value of l

Appendix B: Description of Data Sets

Appendix C: Introduction to MINITAB 16

Appendix D: Introduction to SAS: Microcomputer Version

Appendix E: Useful Formulas in Statistics

Appendix F: Important Finance and Accounting Topics

Index
Statistics for Business and Financial Economics
Lee, C.-F.; Lee, J.C.; Lee, A.C.
2013, XLVIII, 1206 p. 313 illus., 189 illus. in color., Hardcover
ISBN: 978-1-4614-5896-8