Preface

Constructal Law, Design in Nature, and Complexity

This book is about the Constructal Law of design in nature and the state of the field that is growing around this law of physics. It explores the unifying power of the Constructal Law and its applications in all the domains of design generation and evolution, from biology and geophysics to globalization, engineering, sustainability, and security. This growing activity covers the board, from physics and biology to social organization and technology evolution.

The Constructal Law has generated a worldwide movement toward design as science, i.e., design as a physics phenomenon as captured in 1996 by the Constructal Law: “For a finite-size flow system to persist in time (to live), its configuration must evolve in such a way that it provides easier access to the imposed (global) currents that flow through it.”

Life is movement and the persistent morphing of the configuration of this movement. The Constructal Law identifies (a) life, design and evolution (changes in configuration) as a physics phenomenon and (b) captures the time direction of design generation and evolution. Reviews of this growing field are available in refs. 1–7.

To place the Constructal Law and its field in the greater framework of scientific inquiry, it is timely to review what we mean by design in nature and by other words that refer to design in nature: complexity, networks, diversity, chance, turbulence, etc. These words are old and numerous because the fascination with the surroundings has inspired human curiosity and creativity throughout history. Science is only the latest and most powerful mental construct that came out of this natural human tendency to understand and use the surroundings in order to move more easily, farther, and more persistently in time through the surroundings.

Design has two meanings in English. The first is the noun, which means shape, structure, configuration, pattern, drawing, figure, rhythm, motif, architecture, and
many more words that represent the mental viewing of an image—black lines on a background of a different color. Design in nature is about this. Science began with images: geometry (the science of figures) and mechanics (the science of contrivances made out of moving figures). We think, we create, and we speak in terms of images. Design in nature is about this, the images. The very fact that these images have names—river basin, lung, snowflake—means that we all know what they are individually even though they all look like trees.

The second meaning is the verb “to design,” which is about the human activity of creating images and contrivances that are useful. This verb refers strictly to what people do on a design project, for example in engineering, where along with the verb “to design” comes “the designer” as one or many. This second meaning is not the object of this book or of any other application of the Constructal Law. Design in nature is not about “to design” and “the designer.”

The Constructal Law is about predicting the design (the flow configuration) and its evolution in time. The Constructal Law is about why geometry happens. Constructal theory is the view that the Constructal Law is correct and reliable in a predictive sense. The use of constructal theory to discover flow configurations that offer greater access is constructal design.

Constructal theory and design are predictive, not descriptive. This is the big difference between the Constructal Law and other views of design in nature. Previous attempts to explain design in nature are based on empiricism: observing first and explaining after. They are backward looking, descriptive, and at best explanatory. They are not predictive theories even though some are called theories. Examples are complexity theory, network theory, chaos theory, power laws (allometric scaling rules), general models, and optimality statements (minimum, maximum, optimum).

The Constructal Law is not about optimality, destiny, or end design. It is about the fact that the generation and evolution of design never ends. With the Constructal Law we anticipate the evolving design and its direction in time. Complexity and scaling rules are discovered, not observed. Complexity is finite (modest), and is part of the description of the constructal design that emerges. If the flows are between points and areas or volumes, the constructal designs that are discovered are treeshaped networks. The “networks” are discovered, not observed, and not postulated. Networks, scaling rules, and complexity are part of the description of the world of constructal design that emerges predictively from the Constructal Law.

Based on selected papers presented at the 2011 Constructal Law Conference in Porto Alegre, Brazil, this book illustrates the life, vigor, and growth of the research field that is stimulated today by the Constructal Law. The samples selected for presentation cover the broad range of science, from physics and biology to technology and human dynamics. The first part of the book is devoted to fundamentals and how the Constructal Law can be used to predict design in nature, the generation of design and the evolution of design. The second part takes the reader into the world of applications, where the constructal configurations are placed in processes and
systems that are useful. Together, the constructal fundamentals and applications are an invitation to new research with the Constructal Law, in new directions that so far are waiting to be brought under the tent of “design as science,” which the Constructal Law holds firmly.

Porto Alegre, RS, Brazil
Luiz A.O. Rocha

Toulouse, France
Sylvie Lorente

Durham, NC, USA
Adrian Bejam

References

Constructal Law and the Unifying Principle of Design
Rocha, L.A.O.; Lorente, S.; Bejan, A. (Eds.)
2013, XIV, 330 p., Hardcover
ISBN: 978-1-4614-5048-1