## Contents

1 **Introductory Measure Theory** ............................................. 1
1 Probability Theory: An Introduction ................................. 1
2 Basics from Measure Theory ............................................. 2
  2.1 Sets ................................................................................. 3
  2.2 Collections of Sets ...................................................... 5
  2.3 Generators ................................................................. 7
  2.4 A Metatheorem and Some Consequences ......................... 9
3 The Probability Space ....................................................... 10
  3.1 Limits and Completeness .............................................. 11
  3.2 An Approximation Lemma ........................................... 13
  3.3 The Borel Sets on $\mathbb{R}$ ........................................ 14
  3.4 The Borel Sets on $\mathbb{R}^n$ ........................................ 16
4 Independence; Conditional Probabilities ............................. 16
  4.1 The Law of Total Probability; Bayes’ Formula .................. 17
  4.2 Independence of Collections of Events ......................... 18
  4.3 Pair-wise Independence .............................................. 19
5 The Kolmogorov Zero–One Law .......................................... 20
6 Problems ........................................................................... 22

2 **Random Variables** .......................................................... 25
1 Definition and Basic Properties ........................................... 25
  1.1 Functions of Random Variables .................................... 27
2 Distributions ................................................................. 30
  2.1 Distribution Functions ............................................... 30
  2.2 Integration: A Preview ............................................... 32
  2.3 Decomposition of Distributions .................................... 36
  2.4 Some Standard Discrete Distributions ......................... 39
  2.5 Some Standard Absolutely Continuous
    Distributions ....................................................... 39
18.5 $\sum_{n=1}^{\infty} P(A_n) = \infty$ and $P(A_n \text{ i.o.}) = 0$ .......................... 104
18.6 Pair-Wise Independence ................................................. 104
18.7 Generalizations Without Independence .......................... 105
18.8 Extremes ............................................................... 106
18.9 Further Generalizations .............................................. 109
19 A Convolution Table ......................................................... 113
20 Problems ................................................................. 113

3 Inequalities ................................................................. 119
1 Tail Probabilities Estimated Via Moments .................. 119
2 Moment Inequalities ......................................................... 127
3 Covariance: Correlation .................................................... 130
4 Interlude on $L^p$-Spaces ................................................ 131
5 Convexity ................................................................. 132
6 Symmetrization ............................................................ 133
7 Probability Inequalities for Maxima ............................ 138
8 The Marcinkiewicz–Zygmund Inequalities .................. 146
9 Rosenthal’s Inequality ....................................................... 151
10 Problems ................................................................. 153

4 Characteristic Functions .................................................. 157
1 Definition and Basics ......................................................... 157
1.1 Uniqueness; Inversion .................................................. 159
1.2 Multiplication ............................................................ 164
1.3 Some Further Results .................................................. 165
2 Some Special Examples ..................................................... 166
2.1 The Cantor Distribution .............................................. 166
2.2 The Convolution Table Revisited .............................. 168
2.3 The Cauchy Distribution .............................................. 170
2.4 Symmetric Stable Distributions .................................. 171
2.5 Parseval’s Relation ....................................................... 172
3 Two Surprises ............................................................... 173
4 Refinements ................................................................. 175
5 Characteristic Functions of Random Vectors ................. 180
5.1 The Multivariate Normal Distribution ....................... 180
5.2 The Mean and the Sample Variance Are Independent .................. 183
6 The Cumulant Generating Function ............................. 184
7 The Probability Generating Function ......................... 186
7.1 Random Vectors .......................................................... 188
8 The Moment Generating Function ............................... 189
8.1 Random Vectors .......................................................... 191
8.2 Two Boundary Cases .................................................... 191
9 Sums of a Random Number of Random Variables ........ 192
10 The Moment Problem .................................................. 194
  10.1 The Moment Problem for Random Sums ......................... 196
11 Problems ............................................................... 197

5 Convergence .............................................................. 201
  1 Definitions ............................................................ 202
   1.1 Continuity Points and Continuity Sets .......................... 203
   1.2 Measurability ....................................................... 205
   1.3 Some Examples .................................................... 206
  2 Uniqueness ............................................................. 207
  3 Relations Between Convergence Concepts ............................ 208
   3.1 Converses ............................................................ 211
  4 Uniform Integrability ................................................ 213
  5 Convergence of Moments .............................................. 217
   5.1 Almost Sure Convergence ......................................... 218
   5.2 Convergence in Probability ...................................... 219
   5.3 Convergence in Distribution ..................................... 222
  6 Distributional Convergence Revisited ................................ 224
   6.1 Scheffé’s Lemma .................................................... 226
  7 A Subsequence Principle ............................................. 228
  8 Vague Convergence; Helly’s Theorem .................................. 230
   8.1 Vague Convergence ................................................ 230
   8.2 Helly’s Selection Principle ...................................... 231
   8.3 Vague Convergence and Tightness ................................ 234
   8.4 The Method of Moments ......................................... 236
  9 Continuity Theorems .................................................. 237
   9.1 The Characteristic Function ...................................... 237
   9.2 The Cumulant Generating Function ................................ 240
   9.3 The (Probability) Generating Function ............................ 240
   9.4 The Moment Generating Function ................................ 241
 10 Convergence of Functions of Random Variables ..................... 243
   10.1 The Continuous Mapping Theorem .................................. 244
 11 Convergence of Sums of Sequences .................................. 246
   11.1 Applications ........................................................ 248
   11.2 Converses ............................................................ 251
   11.3 Symmetrization and Desymmetrization ............................ 254
 12 Cauchy Convergence .................................................. 255
 13 Skorohod’s Representation Theorem .................................. 257
 14 Problems ............................................................... 259

6 The Law of Large Numbers ............................................ 265
  1 Preliminaries .......................................................... 266
   1.1 Convergence Equivalence ......................................... 266
   1.2 Distributional Equivalence ........................................ 267
4.4 Records ..................................................... 352
5 Uniform Integrability; Moment Convergence .................. 353
6 Remainder Term Estimates .................................. 355
6.1 The Berry–Esseen Theorem ............................. 355
6.2 Proof of the Berry–Esseen Theorem 6.2 ............... 357
7 Some Additional Results and Remarks ....................... 363
7.1 Rates of Rates ............................................ 363
7.2 Non-Uniform Estimates ................................. 364
7.3 Renewal Theory .......................................... 364
7.4 Records .................................................. 365
7.5 Local Limit Theorems .................................... 365
7.6 Large Deviations ......................................... 366
7.7 Convergence Rates ....................................... 367
7.8 Precise Asymptotics ...................................... 372
7.9 A Short Outlook on Extensions .......................... 375
8 Problems .................................................... 377

8 The Law of the Iterated Logarithm .......................... 383
1 The Kolmogorov and Hartman–Wintner LILs ............. 384
1.1 Outline of Proof ....................................... 385
2 Exponential Bounds ........................................ 385
3 Proof of the Hartman–Wintner Theorem ..................... 387
4 Proof of the Converse ...................................... 396
5 The LIL for Subsequences ................................ 398
5.1 A Borel–Cantelli Sum for Subsequences ............... 401
5.2 Proof of Theorem 5.2 .................................. 402
5.3 Examples ................................................ 404
6 Cluster Sets .................................................. 404
6.1 Proofs .................................................... 406
7 Some Additional Results and Remarks ....................... 412
7.1 Hartman–Wintner via Berry–Esseen ..................... 412
7.2 Examples Not Covered by Theorems 5.2 and 5.1 ....... 413
7.3 Further Remarks on Sparse Subsequences ............... 414
7.4 An Anscombe LIL ....................................... 416
7.5 Renewal Theory for Random Walks ..................... 417
7.6 Record Times ............................................. 417
7.7 Convergence Rates ...................................... 418
7.8 Precise Asymptotics ..................................... 419
7.9 The Other LIL .......................................... 419
7.10 Delayed Sums .......................................... 420
8 Problems .................................................... 421
## 9 Limit Theorems: Extensions and Generalizations

1. Stable Distributions ........................................ 423
2. The Convergence to Types Theorem .......................... 427
3. Domains of Attraction ....................................... 430
   3.1 Sketch of Preliminary Steps ............................... 433
   3.2 Proof of Theorems 3.2 and 3.3 ............................ 435
   3.3 Two Examples ........................................... 438
   3.4 Two Variations ........................................... 439
   3.5 Additional Results ........................................ 440
4. Infinitely Divisible Distributions ............................ 442
5. Sums of Dependent Random Variables .......................... 448
6. Convergence of Extremes ..................................... 451
   6.1 Max-Stable and Extremal Distributions .................... 451
   6.2 Domains of Attraction ..................................... 456
   6.3 Record Values ............................................ 457
7. The Stein–Chen Method ...................................... 459
8. Problems ...................................................... 464

## 10 Martingales .................................................. 467

1. Conditional Expectation ...................................... 468
   1.1 Properties of Conditional Expectation ..................... 471
   1.2 Smoothing ................................................ 474
   1.3 The Rao–Blackwell Theorem ............................... 475
   1.4 Conditional Moment Inequalities ......................... 476
2. Martingale Definitions ...................................... 477
   2.1 The Defining Relation .................................... 479
   2.2 Two Equivalent Definitions ............................... 479
3. Examples ..................................................... 481
4. Orthogonality ................................................ 487
5. Decompositions ............................................... 488
6. Stopping Times ............................................... 491
7. Doob’s Optional Sampling Theorem ........................... 495
8. Joining and Stopping Martingales ............................ 497
9. Martingale Inequalities ..................................... 501
10. Convergence .................................................. 508
    10.1 Garsia’s Proof ........................................... 508
    10.2 The Upcrossings Proof .................................. 511
    10.3 Some Remarks on Additional Proofs ..................... 514
    10.4 Some Questions ......................................... 515
    10.5 A Non-Convergent Martingale ......................... 515
    10.6 A Central Limit Theorem? .............................. 515
11. The Martingale $E(Z \mid \mathcal{F}_n)$ .......................... 516
12. Regular Martingales and Submartingales .................... 517
    12.1 A Main Martingale Theorem ............................ 517
12.2 A Main Submartingale Theorem ......................... 518
12.3 Two Non-regular Martingales .......................... 519
12.4 Regular Martingales Revisited ....................... 520
13 The Kolmogorov Zero–One Law ............................ 520
14 Stopped Random Walks .................................. 521
14.1 Finiteness of Moments .................................. 521
14.2 The Wald Equations .................................. 523
14.3 Tossing a Coin Until Success ......................... 525
14.4 The Gambler’s Ruin Problem ......................... 526
14.5 A Converse ........................................... 530
15 Regularity ............................................... 532
15.1 First Passage Times for Random Walks ............. 535
15.2 Complements ......................................... 537
15.3 The Wald Fundamental Identity ..................... 538
16 Reversed Martingales and Submartingales ............. 541
16.1 The Law of Large Numbers ......................... 545
16.2 U-Statistics ......................................... 547
17 Problems ............................................... 549

Appendix: Some Useful Mathematics ..................... 555

A.1 Taylor Expansion ..................................... 555
A.2 Mill’s Ratio .......................................... 558
A.3 Sums and Integrals .................................... 559
A.4 Sums and Products .................................... 560
A.5 Convexity; Clarkson’s Inequality .................... 561
A.6 Convergence of (Weighted) Averages ................ 564
A.7 Regularly and Slowly Varying Functions .......... 566
A.8 Cauchy’s Functional Equation ...................... 569
A.9 Functions and Dense Sets. ............................ 571

References .............................................. 577

Index .................................................. 587
Probability: A Graduate Course
Gut, A.
2013, XXVI, 602 p., Hardcover
ISBN: 978-1-4614-4707-8