Contents

Section I General Principles of Mitochondria and the Heart

1 Introduction to Mitochondria in the Heart .. 3
 The Energy-Consuming Heart ... 3
 The Mitochondrion: Origin, Morphology, Composition, and Dynamics 3
 Cardiac Energy Metabolism ... 4
 Mitochondrial Biogenesis .. 6
 Cardiac Mitochondria and Cell Death .. 7
 Mitochondria and Ca²⁺ Signaling: Link Between Myocardial
 Contraction and Cell Death .. 7
 Mitochondrial Dysfunction Related to Cardiovascular Disorders 8
 References ... 9

2 Methods to Study Mitochondrial Structure and Function 13
 Introduction ... 13
 High-Resolution Imaging of Mitochondria in Live Cells 13
 High-Resolution Electron Microscopy and Electron Tomography 14
 Molecular Biological and Biochemical Methods .. 15
 mtDNA Analysis .. 15
 In Vitro Assessment of Mitochondrial Function ... 15
 In Vivo Assessment of Mitochondrial Function ... 16
 Electrophoretic Techniques to Study Mitochondria 18
 Mitochondrial Proteomics .. 19
 Transgenic Models for Assessing Mitochondrial Function in the Heart 20
 Conclusion and Future Progress ... 20
 Summary ... 22
 References ... 23

3 Mitochondrial Structure, Composition, and Dynamics 29
 Introduction ... 29
 Mitochondrial Arrangement in Cardiomyocytes ... 29
 Internal Structure of Mitochondria .. 30
 Mitochondrial Outer and Inner Membranes .. 31
 Cardiolipin .. 32
 Mitochondrial Permeability Transition Pore ... 33
 Voltage-Dependent Anion Channel ... 34
 Adenine Nucleotide Translocase ... 34
 Cyclophilin-D ... 35
 Mitochondrial Phosphate Carrier (PiC) .. 35
Contents

- Mitochondrial Channels .. 36
- Mitochondrial Ca²⁺ Channels .. 36
- Mitochondrial K⁺ Channels .. 36
- mitoK_{ATP} Channel ... 37
- mitoBK_{Ca} Channel .. 38
- mitoK_{,1.3} Channel ... 38
- Mitochondrial Protein Import Channels .. 38
- TOM ... 39
- Presequence Translocase in the MIM (TIM23) .. 39
- Carrier Translocase in the MIM (TIM22) .. 40
- Mitochondrial Matrix and Intermembrane Space .. 40
- Mitochondrial Dynamics ... 40
 - The Molecular Machinery and Mechanisms of Mitochondrial Fusion ... 40
 - The Molecular Machinery and Mechanisms of Mitochondrial Fission ... 42
- Mitochondrial Trafficking .. 43
 - Regulation of Mitochondrial Dynamics .. 43
- Conclusions .. 45
- Summary .. 46
- References ... 49

4 Mitochondrial Biogenesis

- Introduction .. 59
- Mitochondrial Genome: Structure and Dynamics ... 59
 - Mitochondrial DNA .. 59
 - Mitochondrial Nucleoid .. 60
 - Replication of Mitochondrial DNA .. 62
 - Transcription of Mitochondrial DNA ... 65
 - Translation in Mitochondria .. 67
- Mitochondrial DNA Repair .. 69
- Mitochondrial Protein Biogenesis ... 70
 - Presequence Pathway .. 70
 - Carrier Pathway .. 72
 - Redox-Regulated Import Pathway .. 73
 - Biogenesis of the MOM Proteins ... 73
- Mitochondrial Lipid Biogenesis .. 75
 - Mitochondrial Phospholipids .. 75
 - Mitochondrial Phospholipid Biosynthesis ... 75
 - Mitochondrial Phospholipid Traffic .. 77
- PGC-1α: A Central Regulator of Mitochondrial Biogenesis ... 77
 - PGC-1 Family ... 77
 - Regulation of PGC-1α .. 78
 - Transcriptional Regulation ... 78
 - Posttranscriptional Regulation .. 79
 - In Vivo Functions of PGC-1 Family Members ... 80
- PGC-1-Mediated Regulatory Circuitry in the Heart .. 81
 - Conclusion .. 81
 - Summary .. 83
 - References ... 86

5 Mechanisms of Bioenergy Production in Mitochondria

- Introduction .. 99
- Pyruvate Dehydrogenase Complex ... 99
- Fatty Acid Oxidation (β-Oxidation Spiral) .. 101
Production of Reducing Equivalents: Tricarboxylic Acid Cycle .. 104
 Citrate Synthase .. 105
 Aconitase .. 106
 Isocitrate Dehydrogenase .. 106
 2-Oxoglutarate Dehydrogenase (α-Ketoglutarate Dehydrogenase) .. 106
 Succinate Dehydrogenase ... 107
 Fumarase .. 107
 Malate Dehydrogenase .. 108

Oxidative Phosphorylation .. 108
 NADH: Ubiquinone Oxidoreductase (Complex I) .. 108
 Succinate: Ubiquinone Oxidoreductase (Complex II) .. 109
 Ubiquinol–Cytochrome c Oxidoreductase (Complex III, or Cytochrome bc1 Complex, or CIII) .. 110
 Cytochrome c Oxidase (CIV or COX) .. 111
 ATP Synthase (Complex V) .. 112

Role of Mitochondrial Kinases in Energy and Nucleotide Homeostasis .. 112
 Creatine Kinase .. 113
 Nucleoside Diphosphate Kinase .. 113
 Adenylate Kinase ... 113
 Conclusions .. 114
 Summary .. 115
 References .. 116

6 Bioenergetics Interplay Between Cardiac Mitochondria and Other Subcellular Compartments .. 123
 Introduction ... 123
 Mitochondria/Nucleus Interactions .. 123
 Mitochondria/Cytosol Interactions ... 127
 Hormonal Regulation .. 131
 Mitochondria and Peroxisomes Interactions ... 134
 Role of Ca^{2+} Ions ... 134
 Conclusions .. 137
 Summary .. 137
 References .. 139

Section II Heart Mitochondria Signal Transduction: Stem Cells

7 Endothelial Mitochondria: Contribution to Cardiovascular Function and Disease .. 147
 Introduction ... 147
 Release of Vasodilators: Role of OXPHOS and [Ca^{2+}]_in .. 147
 Role of Endothelial Mitochondria in the Generation of Reactive Oxygen Species 148
 Role of Endothelial Mitochondria in the Generation of NO .. 150
 Endothelial Mitochondria and Apoptosis .. 151
 Conclusions .. 152
 Summary .. 153
 References .. 153

8 Heart Mitochondria: Receivers and Transmitters of Signals .. 157
 Introduction ... 157
 Mitochondria Signaling .. 157
 Mitochondrial Bioenergetics .. 157
 Mitochondrial Biogenesis ... 158
Signaling at the Mitochondria ... 159
Reactive Oxygen Species Generation and Signaling 159
Mitochondrial Receptors ... 159
Translocation of Proteins into Mitochondria .. 159
Mitochondrial Retrograde Signaling .. 159
Role of Calcium in Nuclear-Mitochondrial Cross Talk 160
Endoplasmic Reticulum .. 160
Key Players in Mitochondrial Signaling .. 160
Nuclear Gene Activation .. 160
Protein Kinases ... 161
Calcium Signaling ... 162
Mitochondrial K$_{ATP}$ Channel .. 163
Mitochondrial Permeability Transition Pore .. 164
Survival and Stress Signals Impact Heart Mitochondria 165
Survival Signals ... 165
Stress Signals .. 167
Metabolic Signals and UCPs ... 167
Cardiomyopathy and Mitochondrial Signaling Defects 170
Mitochondrial Signaling in Myocardial Ischemia and Cardioprotection 170
Mitochondrial Signaling and Myocardial Hypertrophy 173
Survival Signals/Apoptosis .. 174
Future Prospects: Therapeutic Targets and Directions 174
Conclusions ... 175
Summary .. 175
References .. 176

9 Stem Cells and Mitochondria ... 183
Introduction .. 183
Stem Cell Types and Delivery Techniques .. 183
 Allogenic Cell Types ... 184
Mechanisms of Stem Cell Self-Renewal and Pluripotency 187
 Cell Cycle Regulation and Self-Renewal of Stem Cells 187
 Molecular Circuit of Pluripotency .. 188
Mitochondrial Metabolism in Stem Cells .. 190
 Mitochondria Number and Morphology ... 190
 Mitochondrial DNA Dynamics ... 190
 Mitochondrial Metabolism ... 190
 Oxidative Stress in Stem Cells .. 191
 Mitochondria-Mediated Apoptosis of Stem Cells 191
Conclusions ... 192
Summary .. 193
References .. 195

Section III Stress and Cell Death

10 Heart Mitochondrial ROS and Oxidative Stress 205
Introduction ... 205
Mitochondrial ROS Production ... 205
Effects of ROS on Cardiomyocytes .. 207
ROS and Cell Signaling .. 207
ROS and Cardiomyopathy ... 207
Oxidative Stress in Myocardial Ischemia and HF 210
ROS in the Aging Heart ... 211
Oxidative Stress and Apoptosis ... 214
Mitochondrial Nitric Oxide .. 214
Antioxidant Defenses ... 215
Antioxidant Therapy .. 216
Conclusions and Future Directions ... 218
Summary .. 218
References ... 219

11 Cell-Death Pathways and Mitochondria .. 225
Introduction .. 225
Apoptosis ... 225
Intrinsic (Mitochondrial) Pathway .. 225
Extrinsic Pathway .. 229
Necrosis .. 230
Autophagy .. 231
Cell Death in the Pathogenesis of Myocardial Disorders 233
Conclusions .. 234
Summary .. 235
References ... 237

Section IV Mitochondria in Pediatric Cardiology

12 Mitochondria in Pediatric Cardiovascular Diseases 245
Introduction .. 245
General Aspects of Mitochondria ... 245
Mitochondrial Cardiomyopathy .. 247
Cardiomegaly and Mitochondrial Phenotype .. 250
Diagnosis ... 252
Clinical and Laboratory Findings in MCM ... 252
Histological and Electron Microscopic (EM) Analysis .. 252
Mitochondrial tRNA Mutations ... 256
Mitochondrial Structural Gene Mutations .. 257
ATP Synthase (ATPase6) ... 257
Cytochrome b .. 258
Mutations in COX and ND Subunits ... 258
MtDNA Depletion .. 258
Mitochondrial Changes in Congenital Heart Defects 259
Structural and Functional Cardiac Defects .. 259
Cardiac Dysrhythmias ... 259
Other Congenital Cardiomyopathies with Mitochondrial Defects 260
Congenital Heart Defects and Mitochondrial Function 262
Conclusions and Future Directions ... 262
Summary .. 263
References .. 265

Section V The Aging Heart and Mitochondria

13 Mitochondria in the Aging Heart ... 273
Introduction .. 273
Oxidative Stress and Aging ... 273
Oxidative Damage of Mitochondrial Proteins in Aging Heart 275
Role of Lipids in Age-Related Changes of Cardiac Mitochondria 275
Involvement of DNA Damage in Age-Related Mitochondrial Dysfunction 278
Contents

Loss of Cardiac Cells due to Chronic Exposure to Free Radicals in the Senescent Myocardium ... 279
Aging and Biogenesis of Mitochondria ... 280
Mitochondrial Dynamics in Aging ... 281
Telomeres .. 281
Cardiac Channelopathies .. 282
Conclusions ... 284
Summary .. 284
References .. 286

Section VI Mitochondria in Atherosclerosis, Hypertension and Ischemia

14 The Role of Mitochondria in Atherosclerosis .. 295
Introduction .. 295
Mitochondrial Dysfunction in Atherosclerosis .. 295
Oxidative Dysfunction ... 295
Oxidative Damage ... 297
Mitochondrial Dysfunction in Conditions Associated with Atherosclerosis... 298
Diabetes Mellitus ... 298
Dyslipidemia ... 299
Conclusions ... 299
Summary .. 300
References .. 301

15 The Role of Mitochondria in Hypertension ... 305
Introduction .. 305
Mechanisms of ROS Generation and Mitochondrial Dysfunction 305
The Role of Mitochondrial Uncoupling Proteins .. 307
The Mitochondrial DNA and Oxidative Damage .. 308
Conclusions and Future Prospects .. 309
Summary .. 309
References .. 310

16 Role of Mitochondria in Ischemia and Cardioprotection 313
Introduction .. 313
Mitochondria in Ischemia and Reperfusion in the Heart 313
Impairment of Energy Metabolism ... 313
Impairment of Oxidative Metabolism .. 314
Alterations in Mitochondrial Calcium Homeostasis 315
Increased Generation of Reactive Oxygen Species 315
Mitochondrial Permeability Transition Pore Opening 315
ATP-Binding Cassette Mitochondrial Erythroid ... 317
Mitochondria and Cardioprotection ... 317
Mitochondria Self-Defense Mechanisms ... 317
Mitochondria-Directed Cardioprotection Strategies 318
MPTP Inhibition .. 318
Antioxidant and Inhibition of Monoamine Oxidase 319
Metabolic Approaches ... 319
Thioredoxin/Thioredoxin Reductase System ... 320
Conclusions ... 320
Summary .. 321
References .. 322
Section VII Mitochondria in Heart Failure and Dysrhythmias

17 Mitochondrial Dynamics in Health and Disease ... 329
 Introduction .. 329
 Mitochondrial Dynamics in Human Pathology ... 329
 Autosomal Dominant Optic Atrophy ... 330
 Charcot-Marie- Tooth Neuropathy ... 330
 Charcot-Marie- Tooth Neuropathy Type 2A ... 330
 Charcot-Marie- Tooth Neuropathy Type 4A ... 330
 Abnormal Brain Development .. 330
 The Wolf-Hirschhorn Syndrome .. 331
 Obesity and Type 2 Diabetes .. 332
 Mitochondrial Dynamics in the Normal and Failing Heart .. 332
 Ischemia/Reperfusion Injury ... 333
 Cardiomyopathies ... 334
 Heart Failure .. 334
 Diabetic Heart .. 335
 Conclusions ... 336
 Summary .. 336
 References .. 339

18 Mitochondria Play an Essential Role in Heart Failure ... 343
 Introduction .. 343
 Mitochondrial Bioenergetics in HF .. 343
 ATP Generation ... 343
 Mitochondrial ROS Generation and Antioxidant Response ... 346
 Critical Role of Mitochondrial Bioenergetic Enzymes and ROS in Animal Models of HF. ... 348
 Electron Transport Chain Respirasome in HF ... 350
 Transgenic Models in the Study of Mitochondria ... 350
 Alterations in Heart Failure .. 354
 Mitochondrial DNA and HF in Transgenic Mice ... 356
 Peroxisome Proliferator-Activated Receptors-γ Coactivator 1 (PGC-1α) 357
 Peroxisome Proliferator-Activated Receptors .. 359
 Defects in Cytosolic Proteins Can Cause HF with Mitochondrial Dysfunction 361
 Calcium Signaling and Mitochondrial Function in HF .. 361
 Mitochondrial Function and Apoptosis in HF .. 362
 Mitochondrial Dynamics Function and Dysfunction in HF ... 362
 Conclusions and Future Prospect ... 362
 Summary .. 364
 References .. 366

19 Mitochondria and Cardiac Dysrhythmias ... 371
 Introduction .. 371
 The Role of Sarcolemmal K_{ATP} Channels in Dysrhythmia .. 371
 Metabolic Alterations ... 372
 Permeability Transitional Pore ... 373
 The Inner Membrane Anion Channel ... 374
 The Mitochondrial K_{ATP} Channels .. 375
 The Mitochondrial Calcium Uniporter .. 376
 Mitochondrial Redox Status .. 377
 Conclusions ... 378
 Summary .. 378
 References .. 379
Section VIII Mitochondria in Heart Metabolism

20 Diabetes and Cardiac Mitochondria

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>387</td>
</tr>
<tr>
<td>Diabetes-Related Alterations in the Mitochondrial Metabolic Milieu</td>
<td>387</td>
</tr>
<tr>
<td>Role of Mitochondria-Derived ROS in Diabetic Myocardium</td>
<td>390</td>
</tr>
<tr>
<td>Apoptosis</td>
<td>391</td>
</tr>
<tr>
<td>Mitochondria and Activation of Metabolic Damaging Pathways</td>
<td>391</td>
</tr>
<tr>
<td>Diabetes and Cardiac Mitochondrial Calcium Handling</td>
<td>393</td>
</tr>
<tr>
<td>Maternally Inherited Diabetes and Deafness</td>
<td>393</td>
</tr>
<tr>
<td>Conclusions</td>
<td>393</td>
</tr>
<tr>
<td>Summary</td>
<td>395</td>
</tr>
<tr>
<td>References</td>
<td>396</td>
</tr>
</tbody>
</table>

21 The Role of Mitochondria in the Metabolic Syndrome and Insulin Resistance

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>401</td>
</tr>
<tr>
<td>Mechanistic Development of Insulin Resistance:</td>
<td></td>
</tr>
<tr>
<td>The Role of Mitochondria</td>
<td>401</td>
</tr>
<tr>
<td>Oxidative Stress and Mitochondrial Function</td>
<td>403</td>
</tr>
<tr>
<td>Insulin Resistance and Mitochondrial Biogenesis</td>
<td>403</td>
</tr>
<tr>
<td>Aging and Mitochondrial Function</td>
<td>405</td>
</tr>
<tr>
<td>Genetic Factors and Mitochondrial Function</td>
<td>405</td>
</tr>
<tr>
<td>Cardiovascular Metabolic Syndrome: Mitochondrial Bioenergetics and Biogenesis Defects</td>
<td>406</td>
</tr>
<tr>
<td>Conclusions</td>
<td>408</td>
</tr>
<tr>
<td>Summary</td>
<td>408</td>
</tr>
<tr>
<td>References</td>
<td>409</td>
</tr>
</tbody>
</table>

22 Thyroid Hormone and Myocardial Mitochondria

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>413</td>
</tr>
<tr>
<td>Thyroid Hormone: Mechanisms of Regulation</td>
<td>413</td>
</tr>
<tr>
<td>of Cardiac Mitochondria</td>
<td></td>
</tr>
<tr>
<td>Genomic Actions of Thyroid Hormone: Regulation of Expression</td>
<td>413</td>
</tr>
<tr>
<td>of Nuclear-Encoded Mitochondrial Proteins</td>
<td></td>
</tr>
<tr>
<td>Thyroid Hormone Regulates Expression</td>
<td>415</td>
</tr>
<tr>
<td>of Mitochondria-Encoded Proteins</td>
<td></td>
</tr>
<tr>
<td>Thyroid Hormone as a Nongenomic Regulator of Mitochondrial Protein/Enzyme Activities</td>
<td>416</td>
</tr>
<tr>
<td>Thyroid Hormone and Bioenergetics: Regulation of Mitochondrial Energy Production</td>
<td>416</td>
</tr>
<tr>
<td>Thyroid Hormone and Mitochondrial Biogenesis</td>
<td>419</td>
</tr>
<tr>
<td>Thyroid Hormone-Dependent Myocardial Hypertrophy and Mitochondria</td>
<td>421</td>
</tr>
<tr>
<td>Mitochondria Dynamics and Thyroid Hormones</td>
<td>421</td>
</tr>
<tr>
<td>Conclusions</td>
<td>422</td>
</tr>
<tr>
<td>Summary</td>
<td>422</td>
</tr>
<tr>
<td>References</td>
<td>423</td>
</tr>
</tbody>
</table>

Section IX Mitochondrial Therapy

23 Targeting the Mitochondria in Cardiovascular Diseases

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>431</td>
</tr>
<tr>
<td>Treatment of Mitochondrial Respiratory and Metabolic Defects</td>
<td>431</td>
</tr>
<tr>
<td>Treatment with Antioxidants</td>
<td>432</td>
</tr>
</tbody>
</table>
Contents

- Antioxidant Defense in Heart Failure/ROS Regulation of Signaling Pathways .. 434
- Mitochondrial-Based Therapy of FAO Disorders, Dysrhythmias, and CHF .. 437
- Cardioprotective Agents ... 438
- Animal Models of Mitochondrial-Based Heart Disease .. 439
- Mitochondrial Defects and Gene Therapy .. 441
 - Identification of Genetic Defects .. 441
 - Gene Therapy .. 441
 - Targeting the Mitochondria Using Nucleic Acids ... 443
 - Alternative Methods to Target Mitochondria with Bioactive Compounds ... 444
- Stem Cells and Mitochondrial Defects ... 444
- Conclusions and Future Perspectives ... 444
- Summary .. 445
- References ... 447

Section X Looking to the Future of Mitochondria and the Heart

24 Current Progress and Future Perspectives:

Toward Mitochondrial Medicine .. 455
- Introduction ... 455
- mtDNA Mutations ... 455
- nDNA Mutations .. 457
 - Defects in mtDNA Dynamics ... 457
 - Defects in mtDNA Translation .. 457
 - Defects in OXPHOS Complexes ... 457
 - Defects in Mitochondrial Dynamics ... 458
 - Defects in Other Nuclear Genes Controlling Mitochondrial Functions ... 458
- Models for Mitochondrial Disorders .. 458
 - Yeast Models ... 458
 - Cytoplasmic Hybrid (Cybrid) Models .. 458
 - Mouse Models .. 459
 - Transmitchondrial Mice .. 459
- Mouse Models with Targeted Nuclear Mitochondrial Genes .. 460
- Diagnosis of Mitochondrial Disorders ... 461
 - Histological and Biochemical Screening .. 461
 - Molecular Genetic Screening .. 461
 - Next-Generation Sequencing .. 463
 - Mitochondrial Gene Profiling: Microarray Technologies .. 463
 - Mitochondrial Proteome ... 464
- Conclusions and Future Trends ... 465
- Summary .. 465
- References ... 468

Glossary

- Index .. 485
Mitochondria and Their Role in Cardiovascular Disease
Marín-García, J.
2013, XX, 500 p., Hardcover