Contents

1 Introduction to Network-on-Chip Design ... 1
 1.1 The Physical Medium .. 2
 1.2 Flow Control ... 4
 1.3 Read–Write Transactions .. 5
 1.4 Transactions on the Network: The Transport Layer 6
 1.4.1 Network Interfaces ... 6
 1.4.2 The Network: The Physical Layer 8
 1.5 Putting It All Together ... 9
 1.6 Take-Away Points ... 10

2 Link-Level Flow Control and Buffering ... 11
 2.1 Elastic Buffers ... 12
 2.1.1 Half-Bandwidth Elastic Buffer 13
 2.1.2 Full-Bandwidth 2-Slot Elastic Buffer 15
 2.1.3 Alternative Full-Throughput Elastic Buffers 16
 2.2 Generic FIFO Queues ... 18
 2.3 Abstract Flow Control Model .. 20
 2.4 Credit-Based Flow Control ... 21
 2.5 Pipelined Data Transfer and the Round-Trip Time 22
 2.5.1 Pipelined Links with Ready/Valid Flow Control 24
 2.5.2 Pipelined Links with Elastic Buffers 27
 2.5.3 Pipelined Links and Credit-Based Flow Control 28
 2.6 Request–Acknowledge Handshake and Bufferless Flow Control ... 31
 2.7 Wide Message Transmission .. 32
 2.8 Take-Away Points .. 35

3 Baseline Switching Modules and Routers 37
 3.1 Multiple Inputs Connecting to One Output 38
 3.1.1 Credit-Based Flow Control at the Output Link 41
 3.1.2 Granularity of Buffer Allocation 42
 3.1.3 Hierarchical Switching .. 43
3.2 The Reverse Connection: Splitting One Source to Many Receivers ... 45
3.3 Multiple Inputs Connecting to Multiple Outputs
 Using a Reduced Switching Datapath 46
 3.3.1 Credit-Based Flow Control at the Output Link 47
 3.3.2 Adding More Switching Elements 48
3.4 Multiple Inputs Connecting to Multiple Outputs
 Using an Unrolled Switching Datapath 49
3.5 Head-of-Line Blocking .. 52
3.6 Routers in the Network: Routing Computation 53
 3.6.1 Lookahead Routing Computation 55
3.7 Hierarchical Switching .. 58
3.8 Take-Away Points ... 59

4 Arbitration Logic .. 61
 4.1 Fixed Priority Arbitration 61
 4.1.1 Generation of the Grant Signals 63
 4.2 Round-Robin Arbitration .. 65
 4.2.1 Merging Round-Robin Arbitration with Multiplexing 67
 4.3 Arbiters with 2D Priority State 68
 4.3.1 Priority Update Policies 69
 4.4 Take-Away Points .. 71

5 Pipelined Wormhole Routers 73
 5.1 Review of Single-Cycle Router Organization 75
 5.1.1 Credit Consume and State Update 76
 5.1.2 Example of Packet Flow in the Single-Cycle Router ... 76
 5.2 The Routing Computation Pipeline Stage 77
 5.2.1 Idle-Cycle Free Operation of the RC Pipeline Stage ... 80
 5.3 The Switch Allocation Pipeline Stage 82
 5.3.1 Elementary Organization 82
 5.3.2 Alternative Organization of the SA Pipeline Stage 84
 5.3.3 Idle-Cycle Free Operation of the SA Pipeline Stage ... 86
 5.4 Pipelined Routers with RC and SA Pipeline Stages 88
 5.4.1 Pipelining the Router Only in the Control Path 88
 5.4.2 Pipelining the Router in the Control and the Datapath .. 89
 5.5 Take-Away Points .. 91

6 Virtual-Channel Flow Control and Buffering 93
 6.1 The Operation of Virtual-Channel Flow Control 94
 6.2 Virtual-Channel Buffers .. 97
 6.3 Buffer Sharing ... 99
 6.3.1 The Organization and Operation of a Generic
 Shared Buffer .. 101
 6.3.2 Primitive Shared Buffer for VCs: ElastiStore 103
6.4 VC Flow Control on Pipelined Links .. 105
 6.4.1 Pipelined Links with VCs Using Ready/Valid Flow Control .. 106
 6.4.2 Pipelined Links with VCs Using Credit-Based Flow Control .. 108
6.5 Take-Away Points .. 109

7 Baseline Virtual-Channel Based Switching Modules and Routers 111
 7.1 Many to One Connection with VCs .. 111
 7.1.1 State Variables Required Per-Input and Per-Output VC 112
 7.1.2 Request Generation for the VC Allocator 113
 7.1.3 Request Generation for the Switch Allocator 115
 7.1.4 Gathering Grants and Moving to the Output 117
 7.1.5 The Internal Organization of the VC Allocator for a Many-to-One Connection .. 117
 7.1.6 The Internal Organization of the Switch Allocator for a Many-to-One Connection .. 119
 7.1.7 Output-First Allocation .. 121
 7.2 Many-to-Many Connections Using an Unrolled Datapath: A Complete VC-Based Router .. 121
 7.2.1 Routing Computation .. 122
 7.2.2 Requests to VC the Allocator .. 123
 7.2.3 Requests to the Switch Allocator .. 123
 7.2.4 Gathering Grants and Moving to the Output .. 126
 7.2.5 The Internal Organization of the VC Allocator for a VC-Based Router .. 127
 7.2.6 The Internal Organization of the Switch Allocator for a VC-Based Router .. 129
 7.3 VA and SA Built with Centralized Allocators 131
 7.4 Take-Away Points .. 133

8 High-Speed Allocators for VC-Based Routers 135
 8.1 Virtual Networks: Reducing the Complexity of VC Allocation 136
 8.2 Lookahead VA1 .. 137
 8.3 VC Allocation Without VA2: Combined Allocation 138
 8.3.1 Combined Allocation with VA1 in Series to SA 139
 8.3.2 Combined Allocation with VA1 in Parallel to SA 139
 8.3.3 Combined Allocation with Lookahead VA1 141
 8.4 Speculative Switch Allocation .. 141
 8.4.1 Handling the Speculative and the Non-speculative Grants 143
 8.5 VC-Based Routers with Input Speedup .. 145
 8.6 Take-Away Points .. 147

9 Pipelined Virtual-Channel-Based Routers ... 149
 9.1 Review of Single-Cycle VC-Based Router Organization 150
 9.1.1 Example 1: Two Packets Arriving at the Same Input VC 151
9.1.2 Example 2: Two Packets Arriving at Different Input VCs ... 152

9.2 The Routing Computation Pipeline Stage 153
 9.2.1 Pipelining the Router Only in the Control Path 154
 9.2.2 Pipelining the Router in the Control and the Data Path 155

9.3 The VC Allocation Pipeline Stage .. 157
 9.3.1 Example 1: Two Packets Arriving at the Same Input VC ... 158
 9.3.2 Example 2: Two Packets Arriving at Different Input VCs .. 159
 9.3.3 Obstacles in Removing the Deficiency of the VA Pipeline Stage .. 160

9.4 The Switch Allocation Pipeline Stage 161
 9.4.1 Credit Consume and State Update 162

9.5 Multi-stage Pipelined Organizations for VC-Based Routers 163
 9.5.1 Three-Stage Pipelined Organization: RC|VA|SA–ST 164
 9.5.2 Three-Stage Pipelined Organization: RC–VA|SA|ST 166
 9.5.3 Four-Stage Pipelined Organization: RC|VA|SA|ST 167

9.6 Take-Away Points .. 169

References .. 171
Microarchitecture of Network-on-Chip Routers
A Designer's Perspective
Dimitrakopoulos, G.; Psarras, A.; Seitanidis, I.
2015, XIV, 175 p. 134 illus., 77 illus. in color., Hardcover
ISBN: 978-1-4614-4300-1