Contents

Preface to the Second Edition ... vii
About This Book ... xi
Acknowledgements ... xv
Plasma Astrophysics: History and Neighbours xvii

1 **Particles and Fields: Exact Self-consistent Description**
 1.1 Interacting Particles, Liouville’s Theorem 1
 1.1.1 Continuity in Phase Space 1
 1.1.2 The Character of Particle Interactions 3
 1.1.3 The Lorentz Force, Gravity 5
 1.1.4 Collisional Friction in Plasma 6
 1.1.5 The Exact Distribution Function 8
 1.2 Charged Particles in the Electromagnetic Field 10
 1.2.1 General Formulation of the Problem 10
 1.2.2 The Continuity Equation for Electric Charge 11
 1.2.3 Initial Equations and Initial Conditions 12
 1.2.4 Astrophysical Plasma Applications 13
 1.3 Gravitational Systems .. 13
 1.4 Practice: Exercises and Answers 14

2 **Statistical Description of Interacting Particle Systems**
 2.1 The Averaging of Liouville’s Equation 19
 2.1.1 Averaging Over Phase Space 19
 2.1.2 Two Statistical Postulates 20
 2.1.3 A Statistical Mechanism of Mixing in Phase Space 22
 2.1.4 The Derivation of a General Kinetic Equation 25
 2.2 A Collisional Integral and Correlation Functions 27
 2.2.1 Binary Interactions .. 27
 2.2.2 Binary Correlation ... 29
 2.2.3 The Collisional Integral and Binary Correlation 30
8.2 Debye-Hückel Shielding ... 153
 8.2.1 Simple Illustrations of the Shielding Effect 153
 8.2.2 The Real Shielding Effect 156
 8.2.3 Charge Neutrality and Oscillations in Plasma 156

8.3 Collisional Relaxations in Plasma 158
 8.3.1 Some Exact Solutions 158
 8.3.2 Plasma Heating by Accelerated Electrons 159
 8.3.3 Plasma Heating by Magnetic Reconnection 164
 8.3.4 An Adiabatic Model for Two-Temperature Plasma 166
 8.3.5 Two-Temperature Accretion Flows 168

8.4 Dynamic Friction in Astrophysical Plasma 169
 8.4.1 The Collisional Drag Force and Energy Losses 169
 8.4.2 Electric Runaway .. 174
 8.4.3 Thermal Runaway in Astrophysical Plasma 175

8.5 Practice: Exercises and Answers 177

9 Macroscopic Description of Astrophysical Plasma 181
 9.1 Summary of Microscopic Description 181
 9.2 Definition of Macroscopic Quantities 182
 9.3 Macroscopic Transfer Equations 184
 9.3.1 Equation for the Zeroth Moment 184
 9.3.2 The Momentum Conservation Law 185
 9.4 The Energy Conservation Law 188
 9.4.1 The Second Moment Equation 188
 9.4.2 The Case of Thermodynamic Equilibrium 190
 9.4.3 The General Case of Non-equilibrium Plasma 191
 9.4.4 The Sources and Sinks of Energy 192
 9.5 General Properties of Transfer Equations 194
 9.5.1 Divergent and Hydrodynamic Forms 194
 9.5.2 Status of the Conservation Laws 195
 9.6 Equation of State and Transfer Coefficients 197
 9.6.1 General Approach to the Problem 197
 9.6.2 The Classical Heat Conductive Flux 198
 9.7 The Higher-Order Moment Equations 199
 9.7.1 The 13 Moment Equations by Grad 199
 9.7.2 The Powerful Heat Flux Problem 201
 9.7.3 Large-Amplitude Heat Waves in Solar Flares 204
 9.8 Gravitational Systems .. 206
 9.9 Practice: Exercises and Answers 207

10 Multi-Fluid Models of Astrophysical Plasma 211
 10.1 Multi-fluid Models in Astrophysics 211
 10.2 Langmuir Waves .. 212
 10.2.1 Langmuir Waves in a Cold Plasma 212
 10.2.2 Langmuir Waves in a Warm Plasma 214
 10.2.3 Ion Effects in Langmuir Waves 216
13.3 Astrophysical Jets .. 275
13.3.1 Magnetic and Gravitomagnetic Forces 275
13.3.2 The Space Experiment “Gravity Probe B” 275
13.3.3 Relativistic Jets Near Black Holes 277
13.3.4 Relativistic Jets from Disk Coronae 278
13.4 Practice: Exercises and Answers 279

14 Plasma Flows in a Strong Magnetic Field 285
14.1 The General Formulation of a Problem 285
14.2 The Formalism of Two-Dimensional Problems 287
14.2.1 The First Type of Problems 288
14.2.2 The Second Type of MHD Problems 289
14.3 On the Existence of Continuous Flows 295
14.4 Flows in a Time-Dependent Dipole Field 296
14.4.1 Plane Magnetic Dipole Fields 296
14.4.2 Axial-Symmetric Dipole Fields 299
14.5 Practice: Exercises and Answers 301

15 MHD Waves in Astrophysical Plasma 307
15.1 The Dispersion Equation in Ideal MHD 307
15.2 Small-Amplitude Waves in Ideal MHD 310
15.2.1 Entropy Waves .. 310
15.2.2 Alfvén Waves .. 311
15.2.3 Magnetoacoustic Waves 313
15.2.4 The Phase Velocity Diagram 314
15.3 Dissipation of Alfvén Waves .. 316
15.3.1 Small Damping of Alfvén Waves 316
15.3.2 Slightly Damped MHD Waves 318
15.4 Stability of Plasma-Compressing Waves 319
15.4.1 Derivation of the Dispersion Equation 319
15.4.2 Two Types of MHD Waves 322
15.4.3 Waves in Strong Magnetic Field 324
15.4.4 The Instability of Entropy Waves 325
15.4.5 The Damping of Magnetoacoustic Waves 328
15.5 MHD Oscillations in the Solar Corona 329
15.6 Practice: Exercises and Answers 331

16 Discontinuous Flows in a MHD Medium 333
16.1 Discontinuity Surfaces in Hydrodynamics 333
16.1.1 The Origin of Shocks in Ordinary Hydrodynamics 333
16.1.2 Boundary Conditions and Classification 334
16.1.3 Dissipative Processes and Entropy 336
16.2 Magnetohydrodynamic Discontinuities 337
16.2.1 Boundary Conditions at a Discontinuity Surface 337
16.2.2 Discontinuities Without Plasma Flows Across Them 340
16.2.3 Perpendicular Shock Wave 342
19.3 Properties of Equilibrium Configurations ... 414
 19.3.1 Magnetic Surfaces ... 414
 19.3.2 The Specific Volume of a Magnetic Tube 415
 19.3.3 The Flute or Convective Instability .. 418
 19.3.4 Stability of an Equilibrium Configuration 419
19.4 The Archimedean Force in MHD .. 420
 19.4.1 A General Formulation of the Problem 420
 19.4.2 A Simplified Consideration of the Effect 421
 19.4.3 MHD Equilibrium in the Solar Atmosphere 423
19.5 Grad-Shafranov Equation .. 424
19.6 Practice: Exercises and Answers .. 425

20 Stationary Flows in a Magnetic Field ... 429
 20.1 Ideal Plasma Flows ... 429
 20.1.1 Incompressible Medium .. 430
 20.1.2 Compressible Medium ... 431
 20.1.3 Astrophysical Collimated Streams (Jets) 431
 20.1.4 MHD Waves of Arbitrary Amplitude 432
 20.1.5 Differential Rotation and Isorotation 433
 20.2 Flows at Small Magnetic Reynolds Numbers 436
 20.2.1 Stationary Flows Inside a Duct ... 436
 20.2.2 The MHD Generator or Pump .. 439
 20.2.3 Weakly-Ionized Plasma in Astrophysics 440
 20.3 The σ-Dependent Force and Vortex Flows 441
 20.3.1 Simplifications and Problem Formulation 441
 20.3.2 The Solution for a Spherical Ball 443
 20.3.3 Forces and Flows Near a Spherical Ball 444
 20.4 Large Magnetic Reynolds Numbers .. 448
 20.4.1 The General Formula for the σ-Dependent Force 449
 20.4.2 The σ-Dependent Force in Solar Prominences 452
 20.5 Practice: Exercises and Answers ... 453

Appendix A Notation ... 455

Appendix B Useful Expressions .. 461

Appendix C Constants .. 465

References .. 467

Index .. 487