Contents

1 Introduction .. 1
 1.1 Background 1
 1.2 Book Motivation and Contributions 3
 1.2.1 Exploration Environment for Heterogeneous
 Tree-Based FPGA Architectures 5
 1.2.1 Exploration of Tree-Based ASIF Architecture 5
 1.3 Book Organization 6

2 FPGA Architectures: An Overview 7
 2.1 Introduction to FPGAs 8
 2.2 Programming Technologies 8
 2.2.1 SRAM-Based Programming Technology 9
 2.2.2 Flash Programming Technology 10
 2.2.3 Anti-fuse Programming Technology 10
 2.3 Configurable Logic Block 11
 2.4 FPGA Routing Architectures 12
 2.4.1 Island-Style Routing Architecture 14
 2.4.2 Hierarchical Routing Architecture 19
 2.5 Software Flow 24
 2.5.1 Logic Synthesis 25
 2.5.2 Technology Mapping 26
 2.5.3 Clustering/Packing 27
 2.5.4 Placement 32
 2.5.5 Routing 36
 2.5.6 Timing Analysis 38
 2.5.7 Bitstream Generation 39
 2.6 Research Trends in Reconfigurable Architectures .. 39
 2.6.1 Heterogeneous FPGA Architectures 40
 2.6.2 FPGAs to Structured Architectures 43
 2.6.3 Configurable ASIC Cores 44
3 Homogeneous Architectures Exploration Environments

3.1 Reference FPGA Architectures
 3.1.1 Mesh-Based FPGA Architecture
 3.1.2 Tree-Based FPGA Architecture
 3.1.3 Comparison with Mesh Model

3.2 Architectures Exploration Environments

3.3 Architecture Description
 3.3.1 Architecture Description of Tree-Based Architecture
 3.3.2 Architecture Description of Mesh-Based Architecture

3.4 Software Flow
 3.4.1 Logic Optimization, Mapping and Packing
 3.4.2 Software Flow for Tree-Based Architecture
 3.4.3 Software Flow for Mesh-Based Architecture
 3.4.4 Timing Analysis
 3.4.5 Area and Delay Models

3.5 Experimentation and Analysis
 3.5.1 Architectures Optimization Approaches
 3.5.2 Effect of LUT and Arity Size on Tree-Based FPGA Architecture
 3.5.3 Comparison Between Homogeneous Mesh and Tree-Based FPGAs

3.6 FPGA Hardware Generation
 3.6.1 FPGA Generation Flow
 3.6.2 FPGA VHDL Model Generation
 3.6.3 FPGA Layout Generation

3.7 Summary and Conclusion

4 Heterogeneous Architectures Exploration Environments

4.1 Introduction and Previous Work
4.2 Reference Heterogeneous FPGA Architectures
 4.2.1 Heterogeneous Tree-Based FPGA Architecture
 4.2.2 Heterogeneous Mesh-Based FPGA Architecture

4.3 Architecture Description
 4.3.1 Architecture Description of Heterogeneous Tree-Based Architecture
 4.3.2 Architecture Description of Heterogeneous Mesh-Based Architecture

4.4 Software Flow
4.4.1 Parsers ... 97
4.4.2 Software Flow for Heterogeneous
Tree-Based Architecture 100
4.4.3 Software Flow for Heterogeneous
Mesh-Based Architecture 101
4.4.4 Area Model .. 103
4.5 Exploration Techniques 103
4.5.1 Exploration Techniques for Heterogeneous
Tree-Based Architecture 104
4.5.2 Exploration Techniques for Heterogeneous
Mesh-Based Architecture 106
4.6 Experimentation and Analysis 108
4.6.1 Benchmark Selection 108
4.6.2 Experimental Methodology 110
4.6.3 Results Using Individual Experimentation Approach ... 111
4.6.4 Results Using Generalized Experimentation Approach ... 117
4.7 Heterogeneous FPGA Hardware Generation 121
4.8 Summary and Conclusion 122

5 Tree-Based Application Specific Inflexible FPGA 123
5.1 Introduction and Previous Work 123
5.2 Reference FPGA Architectures 125
 5.2.1 Reference Tree-Based FPGA Architecture 125
 5.2.2 Reference Mesh-Based FPGA Architecture 125
5.3 Software Flow 126
5.4 ASIF Generation Techniques 126
 5.4.1 ASIF-Normal Partitioning/Placement Normal Routing . . 127
 5.4.2 ASIF-Efficient Partitioning/Placement Normal Routing . . 128
 5.4.3 ASIF-Normal Partitioning/Placement Efficient Routing . . 130
 5.4.4 ASIF-Efficient Partitioning/Placement Efficient Routing . . 132
5.5 ASIF Area Model 132
5.6 Experimental Results and Analysis 133
 5.6.1 Effect of Different ASIF Generation Techniques
 on Tree-Based Architecture 133
 5.6.2 Effect of LUT and Arity Size on Tree-Based ASIF 138
 5.6.3 Comparison Between Mesh-Based
 and Tree-Based ASIFs 142
 5.6.4 Quality Analysis of Tree-Based ASIF 144
 5.6.5 Quality Comparison Between Mesh-Based
 and Tree-Based ASIFs 146
5.7 ASIF Hardware Generation
- 5.7.1 ASIF Generation Flow
- 5.7.2 ASIF VHDL Model Generation
- 5.7.3 ASIF Layout Generation
- 5.8 Summary and Conclusion

6 Tree-Based ASIF Using Heterogeneous Blocks
- 6.1 Reference Heterogeneous FPGA Architectures
 - 6.1.1 Heterogeneous Tree-Based FPGA Architecture
 - 6.1.2 Heterogeneous Mesh-Based FPGA Architecture
 - 6.1.3 Software Flow
- 6.2 Heterogeneous ASIF Generation Techniques
- 6.3 Experimentation and Analysis
 - 6.3.1 Experimental Benchmarks
 - 6.3.2 Effect of Different ASIF Generation Techniques on Heterogeneous Tree-Based ASIF
 - 6.3.3 Effect of LUT and Arity Size on Heterogeneous Tree-Based ASIF
 - 6.3.4 Comparison Between Heterogeneous Mesh-Based and Tree-Based ASIFs
- 6.4 Quality Analysis of Heterogeneous Tree-Based ASIF
 - 6.4.1 Quality Comparison Between Heterogeneous Mesh-Based and Tree-Based ASIF
- 6.5 Heterogeneous ASIF Hardware Generation
- 6.6 Summary and Conclusion

7 Conclusion and Future Lines of Research
- 7.1 Summary of Contributions
 - 7.1.1 Heterogeneous Tree-Based FPGA Exploration Environment
 - 7.1.2 Tree-Based ASIF Exploration
 - 7.1.3 FPGA and ASIF Hardware Generation for Tree-Based Architecture
- 7.2 Suggestions for Future Research
 - 7.2.1 Datapath Oriented FPGA Architectures
 - 7.2.2 Timing Analysis
 - 7.2.3 Integrating ASIF Blocks in an FPGA Architecture
 - 7.2.4 Further Optimizing the ASIF Generation
 - 7.2.5 The Unexplored Parameters of Mesh-Based Architecture
- References
Tree-based Heterogeneous FPGA Architectures
Application Specific Exploration and Optimization
Farooq, U.; Marrakchi, Z.; Mehrez, H.
2012, XVI, 188 p., Hardcover
ISBN: 978-1-4614-3593-8