Contents

Part I

1 **Planning for Instruction** .. 3
 Legacy of the Tylerian Lesson Plan 3
 Lesson Plan: An Example ... 5
 Alternative Models ... 8
 Conclusion ... 9

2 **Introducing Lesson Play** .. 11
 Developing the “Lesson Play” ... 12
 Potential Interactions .. 12
 A Sample Lesson Play .. 14
 Virtual Planning: What the Lesson Might Be 20

3 **Evolution of the Task** ... 21
 Lesson Play: Iterative Design 22
 First Iteration .. 22
 Next Iterations ... 23
 Final Iterations .. 26
 Lesson Play: Toward ‘Real Teaching’ 28

Part II

4 **Linear Measurement: How Long is a Stick?** 33
 Diverting Teacher–Student Interaction 35
 “Who else?” ... 35
 “Place blocks... and count them” 36
 Funneling Through Telling .. 37
 “Important rules for measuring” 37
 “When we are measuring we have to start at 0” 38

vii
“There is a special trick that we use when we count!”

“Place the stick upright on the table”

Funneling Through Rerouting a Strategy

“Count the spaces in between the numbers”

“No matter where you start”

“If you chose to start the measurement of your stick at 5 cm…”

“You don’t count the first line”

“Can you draw me a 1 cm long line”

What Do We Learn About Prospective Teachers’ Ideas of Measurement?

5 On Divisibility by 4

Retrieving the Correct Divisibility Rule

“Who can remember?”

“Look it up in my notes” or elsewhere

“We can look in the glossary of the textbook”

“I think we are confusing…”

“Some wonderful little tricks”

“You’ve won the concert tickets!”

“How about 1000456814?”

Moving Toward Student Reasoning

“See if you can find a rule that does work”

“That’s easy, they’re all [16, 20 and 24] divisible by four”

“Start looking”… “after the break”

“How does it work?”

“I imagine that each one of these is a chocolate bar”

Uses of Mathematical Language

“A number is divisible by 4 if…”

“Just look at the last two numbers”

“What about the number 6, what’s the rule for that one?”

More Troublesome Expressions

Because... Alternative Diagnoses and Remediation

“Because 354 has 4 in the one’s place”

“Let’s try doing long division”

“Because 354 is an even number”

“I worked through all the division steps”

“4 goes into 354, 88.5 times”

Conclusion
6 On Prime Numbers 89
Following Prompt #1 90
“We could make the multiplication table bigger” 90
“If I give you 12 blocks” 91
“I will circle them and cross out all the multiples of 5 and 7” .. 93
“We should not be using the multiplication tables” 95
Following Prompt #2 96
“Can a number that is bigger than 9 be a factor for a number?” .. 96
“Does anyone know the divisibility rule for 11?” 98
Following Prompt #3 101
“We only need to divide 37 by other primes” 102
“That is not how a prime number is defined” 103
“Let us use the blocks to find out” 104
“Can there be an endless number of prime numbers” 105
“Find a number that is not a prime number and is also not divisible by 2, ..., 9” 106
Conclusion 108

7 Repeating Patterns: Cars and Colours. 111
From Multiples of 4 to Multiples of 3 112
“You should check with him” 112
“I think I know what Monica is doing” 114
“So the way we need to look at this problem…” 115
“Let us draw out the train from cars 1 to 10” 116
“All multiples of 4 should be red, right?” 117
“Why don’t you try re-writing the pattern” 119
Alternative Paths 120
“Are there other numbers 80 is a multiple of?” 120
“Are you thinking that the pattern will repeat for each set of 10” 121
“Let us look at the remainder to help us” 124
“What if we… add another group of 30?” 125
Some Troubles with Patterns 127
“Pattern: what this word means?” 127
“Red would be number 81” 128
“Because 15 is a multiple of 3: lucky coincidence?” 129
Conclusion 131
8 On Comparing Fractions ... 133
On Counterexamples ... 134
“Which is the bigger fraction? 1/2 or 2/4?” 135
“4/6 is bigger than 1/2. And that doesn’t
fit my hypothesis” .. 136
“Maybe that one was a fluke” 137
On Domain of Applicability and Explanation 138
“There might be something to my strategy” 138
“Just because it was the same amount away” 139
“When the fractions are equivalent then it does not work” 140
“When the fractions have the same bottom number…” 142
“You do it your way, but I like my trick better” 145
“Why do you think that is?” 147
“Just because it doesn’t work that doesn’t mean that
it doesn’t have value” .. 148
Revisiting Previous Strategies: Back to the Basics 150
Manipulatives, with a Caution 150
Common Denominators, Always the Best 151
Calculators to the Rescue ... 153
Cross-Play Themes “Met-Before” 154
“Whichever numerator is closest to the denominator” 154
“1/10 = 9, 1/8 = 7, 2/5 = 3, 3/4 = 1” 155
“And if you can’t then this hypothesis is correct” 156
On Counterexamples or on Disconfirming Evidence 157
On Gap Thinking ... 158

9 Area and Perimeter: Melon Farm 161
Diagnoses .. 162
Confusion Between the Two Formulas 162
Not Knowing the Formula for Area 163
Confusion Between the Two Concepts 164
Not Understanding the Concept of Area 165
Interventions .. 166
Macro-Interventions .. 167
“What farm is bigger?” .. 167
“How many cards to cover a student’s desk?” 169
“How many blocks will cover the picture?” 171
“Perimeter measures the outside and area
measures the inside” ... 173
“But what does perimeter mean?” 174
Micro-Interventions .. 175
“’By’ usually means multiply” 175
“Can you tell me what their formulas are?” 176
“It says × so I could try to multiply” 177
“What would happen if you used multiplication?” 178
“Because we used more tiles” .. 179
“Or we could just multiply, that would be faster” 181

Errors, Inattention, and Oversights 183
“Area is the amount of space an object occupies” 183
“You times the length by the width” 184
“Our classroom is 35×43 m” and other unrealistic contexts 185
“John has 500 more square metres of land” 186
“Because we measured the area in squares” 187

Conclusion ... 189

Part III

10 From Creation to Critique ... 193
Lesson Play Written by a Prospective Teacher 194
A Note on Noticing ... 195
Lines 1–11, What We Noticed ... 196
Lines 1–11, What Teachers Noticed 196
Lines 11–20, What We Noticed 200
Lines 11–20, What Teachers Noticed 200
Lines 21–31, What We Noticed 203
Lines 21–31, What Teachers Noticed 204
What Was or Was Not Noticed: Summary 207
On Noticing Mathematics and Noticing Students 208
Noticing Through Lesson Plays 209

11 Focus on Language ... 211
Analyzing Lesson Play Discourse 212
 Modality ... 213
 Hedging .. 217
 Lexical Bundles .. 219
 Ambiguity in Personal Pronouns 223
Reflections .. 225

12 Images of Teaching .. 227
Toward ‘Reform’ Teaching ... 227
 Group Work ... 228
 Manipulatives .. 231
 Drawings and Other Visuals 235
 Realistic Situations ... 237
Lesson Play in Mathematics Education:
A Tool for Research and Professional Development
Zazkis, R.; Sinclair, N.; Liljedahl, P.
2013, XII, 284 p., Hardcover
ISBN: 978-1-4614-3548-8