
Chapter 2
Scalar Delay Differential Equations on Semiaxes

2.1 Introduction

This chapter deals with nonoscillation properties of scalar differential equations
with a finite number of delays. There are a lot of papers devoted to oscillation
conditions for this class of equations. In comparison with oscillation, there are not
so many results on nonoscillation of these equations, especially in monographs on
oscillation theory. One of the aims of this chapter is to consider nonoscillation to-
gether with relevant problems: differential inequalities, comparison results, solution
estimations, stability and so on. The second purpose is to derive some nonoscilla-
tion methods that will be used for other classes of functional differential equations.
In particular, we apply a solution representation formula, so the most important
nonoscillation property is positivity of the fundamental function of the considered
equation.

The chapter is organized as follows. Section 2.2 contains relevant definitions
and the solution representation formula. In Sect. 2.3, we prove that the following
four assertions are equivalent: nonoscillation of the equation and the correspond-
ing differential inequality, positivity of the fundamental function and existence of
a nonnegative solution for a certain nonlinear integral inequality that is constructed
explicitly from the differential equation. Section 2.4 involves comparison theorems
that compare oscillation properties of various equations and also solutions of these
equations. Next, in Sects. 2.5 and 2.6, explicit nonoscillation conditions for several
classes of equations are considered. Section 2.7 includes several oscillation condi-
tions that will be used in the following chapters. In Sect. 2.8, we obtain estimations
for solutions and for the fundamental function of nonoscillatory equations. Sec-
tion 2.9 presents conditions on initial functions and initial values that imply positiv-
ity of solutions. Section 2.10 considers slowly oscillating solutions. In Sect. 2.11,
connection between nonoscillation and stability is established. Finally, Sect. 2.12
involves some discussion and open problems.
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2.2 Preliminaries

We consider the scalar delay differential equation

ẋ(t) +
m∑

k=1

ak(t)x
(
hk(t)

) = 0, t ≥ 0, (2.2.1)

under the following conditions:

(a1) ak , k = 1, · · · ,m, are Lebesgue measurable functions essentially bounded on
each finite interval [0, b].

(a2) hk : [0,∞) → R are Lebesgue measurable functions, hk(t) ≤ t , limt→∞ hk(t)

= ∞, k = 1, · · · ,m.

Together with (2.2.1), we consider for each t0 ≥ 0 the initial value problem

ẋ(t) +
m∑

k=1

ak(t)x
(
hk(t)

) = f (t), t ≥ t0, (2.2.2)

x(t) = ϕ(t), t < t0, x(t0) = x0. (2.2.3)

We also assume that the following hypothesis holds:

(a3) f : [t0,∞) → R is a Lebesgue measurable function essentially bounded in
each finite interval [t0, b], and ϕ : (−∞, t0) → R is a Borel measurable
bounded function.

Definition 2.1 A function x : R → R absolutely continuous on each interval [t0, b]
is called a solution of problem (2.2.2), (2.2.3) if it satisfies (2.2.2) for almost all
t ∈ [t0,∞) and equalities (2.2.3) for t ≤ t0.

Definition 2.2 For each s ≥ 0, the solution X(t, s) of the problem

ẋ(t) +
m∑

k=1

ak(t)x
(
hk(t)

) = 0, x(t) = 0, t < s, x(s) = 1, (2.2.4)

is called a fundamental function of (2.2.1).

We assume X(t, s) = 0, 0 ≤ t < s.
Theorem B.1 implies the following result.

Lemma 2.1 Let (a1)–(a3) hold. Then there exists a unique solution of problem
(2.2.2), (2.2.3) that has the form

x(t) = X(t, t0)x0 +
∫ t

t0

X(t, s)f (s)ds −
m∑

k=1

∫ t

t0

X(t, s)ak(s)ϕ
(
hk(s)

)
ds, (2.2.5)

where ϕ(hk(s)) = 0, if hk(s) > t0.
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2.3 Nonoscillation Criteria

Definition 2.3 We will say that (2.2.1) has a positive solution for t0 ≥ 0 if there
exist an initial function ϕ and a number x0 such that the solution of initial value
problem (2.2.2), (2.2.3) (f ≡ 0) is positive.

Consider together with (2.2.1) the delay differential inequality

ẏ(t) +
m∑

k=1

ak(t)y
(
hk(t)

) ≤ 0. (2.3.1)

The following theorem establishes nonoscillation criteria.

Theorem 2.1 Suppose ak(t) ≥ 0, k = 1, · · · ,m. Then the following hypotheses are
equivalent:

1) There exists t0 ≥ 0 such that (2.3.1) has a positive solution for t0 ≥ 0.
2) There exist a point t1 ≥ 0 and a locally essentially bounded function u(t) non-

negative for t ≥ t1 and satisfying the inequality

u(t) ≥
m∑

k=1

ak(t) exp

{∫ t

hk(t)

u(s)ds

}
, t ≥ t1, (2.3.2)

where we assume u(t) = 0, t < t1.
3) There exists t1 ≥ 0 such that X(t, s) > 0, t ≥ s ≥ t1.
4) There exists t1 ≥ 0 such that (2.2.1) has a positive solution for t ≥ t1.

Proof 1) ⇒ 2) Let y(t) be a positive solution of (2.3.1) for t ≥ t0. Without loss of
generality, we can assume that y(hk(t)) > 0, t ≥ t0. By (a2), there exists a point t1
such that hk(t) ≥ t0 if t ≥ t1, k = 1, · · · ,m.

Denote

u1(t) = − d

dt
ln

y(t)

y(t1)
, t ≥ t0.

Then

y(t) = y(t1) exp

{
−

∫ t

t1

u1(s)ds

}
,

y
(
hk(t)

) = y(t1) exp

{
−

∫ hk(t)

t1

u1(s)ds

}
, (2.3.3)

ẏ(t) = −u1(t)y(t1) exp

{
−

∫ t

t1

u1(s)ds

}
, t ≥ t1.

We substitute (2.3.3) into (2.3.1) and obtain

−u1(t)y(t1) exp

{
−

∫ t

t1

u1(s)ds

}
+

m∑

k=1

y(t1)ak(t) exp

{
−

∫ hk(t)

t1

u1(s)ds

}
≤ 0.
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Hence

− exp

{
−

∫ t

t1

u1(s)ds

}
y(t1)

[
u1(t) −

m∑

k=1

ak(t) exp

{∫ t

hk(t)

u1(s)ds

}]
≤ 0. (2.3.4)

Since y(t) > 0 for t ≥ t0 and ak(t) ≥ 0, we have y(t1) > 0 and

u1(t) ≥
m∑

k=1

ak(t) exp

{∫ t

hk(t)

u1(s)ds

}
, t ≥ t1. (2.3.5)

After denoting

u(t) =
{

u1(t), t ≥ t1

0, t < t1,

(2.3.5) implies (2.3.2).
2) ⇒ 3) Step 1. Consider the initial value problem

ẋ(t) +
m∑

k=1

ak(t)x
(
hk(t)

) = f (t), t ≥ t1, x(t) = 0, t ≤ t1. (2.3.6)

Denote

z(t) = ẋ(t) + u(t)x(t), (2.3.7)

where x is the solution of (2.3.6) and u is a nonnegative solution of (2.3.2). The
assumption x(t) = 0, t ≤ t1 implies z(t) = 0 for t ≤ t1.

The solution x(t) of (2.3.7) satisfies

x(t) =
∫ t

t1

exp

{
−

∫ t

s

u(τ )dτ

}
z(s)ds, (2.3.8)

x
(
hk(t)

) =
∫ hk(t)

t1

exp

{
−

∫ hk(t)

s

u(τ )dτ

}
z(s)ds, (2.3.9)

ẋ(t) = z(t) − u(t)

∫ t

t1

exp

{
−

∫ t

s

u(τ )dτ

}
z(s)ds. (2.3.10)

After substituting (2.3.9) and (2.3.10) into the left-hand side of (2.3.6), we have

z(t) − u(t)

∫ t

t1

exp

{
−

∫ t

s

u(τ )dτ

}
z(s)ds

+
m∑

k=1

∫ hk(t)

t1

exp

{
−

∫ hk(t)

s

u(τ )dτ

}
z(s)ds

= z(t) −
∫ t

t1

exp

{
−

∫ t

s

u(τ )dτ

}
z(s)ds

[
u(t) −

m∑

k=1

ak(t) exp

{∫ t

hk(t)

u(s)ds

}]
.

Hence (2.3.6) can be rewritten in the form

z − Hz = f, (2.3.11)
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where

(Hz)(t) =
∫ t

t1

exp

{
−

∫ t

s

u(τ )dτ

}
z(s)ds

[
u(t) −

m∑

k=1

ak(t) exp

{∫ t

hk(t)

u(s)ds

}]
.

Inequality (2.3.2) yields that if z(t) ≥ 0 then (Hz)(t) ≥ 0 (i.e., operator H is posi-
tive). Besides, the operator H : L∞[t1, b] → L∞[t1, b] is an integral Volterra opera-
tor with the kernel essentially bounded on [t1, b]×[t1, b]. By Theorem A.4, operator
H is weakly compact in the space L∞[t1, b]; Theorem A.7 implies that the spectral
radius is r(H) = 0 < 1.

Thus, if in (2.3.11) f (t) ≥ 0, then

z(t) = f (t) + (Hf )(t) + (
H 2f

)
(t) + · · · ≥ 0.

The solution of (2.3.6) has the form (2.3.8), with z being a solution of (2.3.11).
Hence, if in (2.3.6) f (t) ≥ 0, then for the solution of this equation we have x(t) ≥ 0.
On the other hand, the solution of (2.3.6) can be presented in the form (2.2.5)

x(t) =
∫ t

t1

X(t, s)f (s)ds.

As was shown above, f (t) ≥ 0 implies x(t) ≥ 0, and consequently the kernel of the
integral operator is nonnegative; i.e., X(t, s) ≥ 0 for t ≥ s > t1.

Step 2. Let us prove that in fact the strict inequality X(t, s) > 0 holds. Denote

x(t) = X(t, t1) − exp

{
−

∫ t

t1

u(s)ds

}
, x(t) = 0, t < t1.

The function X(t, t1) is a solution of homogeneous equation (2.3.6). After substi-
tuting x(t) into the left-hand side of (2.3.6), we have

u(t) exp

{
−

∫ t

t1

u(s)ds

}
−

m∑

k=1

ak(t) exp

{
−

∫ hk(t)

t1

u(s)ds

}

= exp

{
−

∫ t

t1

u(s)ds

}[
u(t) −

m∑

k=1

ak(t) exp

{∫ t

hk(t)

u(s)ds

}]
≥ 0.

Hence x(t) is a solution of (2.3.6) with f (t) ≥ 0; as demonstrated above, x(t) ≥ 0.
Consequently,

X(t, t1) ≥ exp

{
−

∫ t

t1

u(s)ds

}
> 0.

For s > t1, the inequality X(t, s) > 0 can be justified similarly.
3) ⇒ 4) A function x(t) = X(t, t1) is a positive solution of (2.2.1) for t ≥ t1.
Implication 4) ⇒ 1) is evident. �

Remark 2.1 If there exists a nonnegative solution of inequality (2.3.2) for t ≥ t1,
then assertions 1), 3) and 4) of Theorem 2.1 are also fulfilled for t ≥ t1.
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We will end this section with the result on the asymptotic behavior of nonoscil-
latory solutions.

Theorem 2.2 Suppose ak(t) ≥ 0, k = 1, · · · ,m,
∫ ∞
t0

∑m
k=1 ak(s)ds = ∞. Then, for

any nonoscillatory solution of (2.2.1), we have limt→∞ x(t) = 0.

Proof Suppose x is an eventually positive solution of (2.2.1). Then x is an eventu-
ally monotonically decreasing function, and hence there exists a nonnegative limit
limt→∞ x(t) = d < ∞. If d > 0, then for some t1 we have x(t) > d − ε > 0, t ≥ t1.
Hence

x(t) = x(t1) −
∫ t

t1

m∑

k=1

ak(s)x
(
hk(s)

)
ds ≤ x(t0) − (d − ε)

∫ t

t1

m∑

k=1

ak(s)ds.

Thus limt→∞ x(t) = −∞, and we have a contradiction, so d = 0, which completes
the proof. �

2.4 Comparison Theorems

Theorem 2.1 can be employed to obtain comparison results in oscillation theory. To
this end, consider together with (2.2.1) the equation

ẋ(t) +
m∑

k=1

bk(t)x
(
hk(t)

) = 0, t ≥ 0. (2.4.1)

Suppose (a1) and (a2) hold for (2.4.1). Denote by Y(t, s) the fundamental func-
tion of (2.4.1).

Theorem 2.3 Suppose ak(t) ≥ 0, ak(t) ≥ bk(t), t ≥ t0, and condition 2) of The-
orem 2.1 holds for (2.2.1). Then (2.4.1) has a positive solution for t ≥ t1 and
Y(t, s) > 0 for t ≥ s ≥ t1.

Proof By Theorem 2.1 and Remark 2.1, the fundamental function X(t, s) of (2.2.1)
is positive for t ≥ t1.

Consider the equation with the zero initial conditions

ẋ(t) +
m∑

k=1

bk(t)x
(
hk(t)

) = f (t), t ≥ t1, x(t) = 0, t ≤ t1. (2.4.2)

We will show that if f (t) ≥ 0, then the solution of (2.4.2) is nonnegative. To this
end, let us rewrite (2.4.2) in the form

ẋ(t) +
m∑

k=1

ak(t)x
(
hk(t)

) +
m∑

k=1

[
bk(t) − ak(t)

]
x
(
hk(t)

)

= f (t), t ≥ t1, x(t) = 0, t ≤ t1.
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Denote

z(t) = ẋ(t) +
m∑

k=1

ak(t)x
(
hk(t)

)
.

By solution representation formula (2.2.5),

x(t) =
∫ t

t1

X(t, s)z(s)ds, x
(
hk(t)

) = χ[t1,∞)

(
hk(t)

) ∫ hk(t)

t1

X
(
hk(t), s

)
z(s)ds,

where χI is the characteristic set of the interval I ,

χ[t1,∞)(t) =
{

1, t ≥ t1,

0, t < t1.

Thus (2.4.2) is equivalent to the equation

z − T z = f, (2.4.3)

where

(T z)(t) =
m∑

k=1

[
ak(t) − bk(t)

]
χ[t1,∞)

(
hk(t)

) ∫ hk(t)

t1

X
(
hk(t), s

)
z(s)ds.

By Corollary B.1, we have the estimate

∣∣X(t, s)
∣∣ ≤ exp

m∑

k=1

∫ b

t1

∣∣ak(τ )
∣∣dτ, t1 ≤ s ≤ t ≤ b,

so the kernel of the integral operator T is essentially bounded on [t1, b] × [t1, b].
By Theorem A.4, operator T is a weakly compact operator in the space L∞[t1, b].
Theorem A.7 implies that the spectral radius r(T ) = 0 < 1.

Theorem 2.1 implies X(t, s) > 0, t ≥ s ≥ t1, and hence operator T is positive.
Therefore, for the solution of (2.4.3), we have

z(t) = f (t) + (Tf )(t) + (
T 2f

)
(t) + · · · ≥ 0 if f (t) ≥ 0.

Then, as in the proof of Theorem 2.1, we conclude that Y(t, s) > 0, t ≥ s ≥ t1, and
therefore x(t) = Y(t, t1) is a positive solution of (2.4.1).

Positivity of Y(t, s) for an arbitrary s > t1 is demonstrated similarly. �

Corollary 2.1 Suppose that ak(t) ≥ 0, ak(t) ≥ bk(t) for t ≥ t0 and (2.2.1) has a
positive solution for t ≥ t0. Then there exists t1 ≥ t0 such that (2.4.1) has a positive
solution for t ≥ t1.

Denote

a+ = max{a,0}.
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Corollary 2.2

1) If the inequality

ẋ(t) +
m∑

k=1

a+
k (t)x

(
hk(t)

) ≤ 0 (2.4.4)

has an eventually positive solution, then (2.2.1) also has an eventually positive
solution.

2) If condition 2) of Theorem 2.1 holds for (2.2.1), where inequality (2.3.2) is re-
placed by

u(t) ≥
m∑

k=1

a+
k (t) exp

{∫ t

hk(t)

u(s)ds

}
, t ≥ t1, (2.4.5)

then (2.2.1) has a positive solution for t ≥ t1 and X(t, s) > 0 for t ≥ s ≥ t1.

Proof Consider the equation

ẋ(t) +
m∑

k=1

a+
k (t)x

(
hk(t)

) = 0.

Either of the two assumptions of the corollary imply that all hypotheses of Theo-
rem 2.1 hold. Since ak(t) ≤ a+

k (t) and a+
k (t) ≥ 0, Theorem 2.3 implies this corol-

lary. �

Inequality (2.4.5) can be employed to obtain a comparison result that improves
the statement of Theorem 2.3.

Consider the equation

ẋ(t) +
m∑

k=1

bk(t)x
(
gk(t)

) = 0, (2.4.6)

and suppose that the hypotheses (a1) and (a2) hold for (2.4.6); denote by Y(t, s) the
fundamental function of this equation.

Theorem 2.4 Suppose that ak(t) ≥ 0 and there exists t0 ≥ 0 such that for (2.2.1)
anyone of assertions 1)–4) of Theorem 2.1 holds for t ≥ t0. If

bk(t) ≤ ak(t), hk(t) ≤ gk(t), k = 1, · · · ,m, (2.4.7)

then there exists t1 ≥ t0 such that (2.4.6) has a positive solution for t ≥ t1 and
Y(t, s) > 0, t ≥ s ≥ t1.

Proof Theorem 2.1 implies that for some t1 ≥ t0 there exists a nonnegative solution
u of inequality (2.3.2) for t ≥ t1. Inequalities (2.4.7) yield that this function is also
a solution of the inequality

u(t) ≥
m∑

k=1

b+
k (t) exp

{∫ t

gk(t)

u(s)ds

}
, t ≥ t1.
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Hence, by Corollary 2.2, (2.4.6) has a positive solution for t ≥ t1 and the fundamen-
tal function of (2.4.6) is positive, which completes the proof. �

The inequality X(t, s) > 0 can be employed to compare solutions of two distinct
differential equations. To this end, consider together with (2.2.2), (2.2.3) the initial
value problem with the same delays:

ẏ(t) +
m∑

k=1

bk(t)y
(
hk(t)

) = g(t), t ≥ t1, (2.4.8)

y(t) = ψ(t), t < t1, y(t1) = y0. (2.4.9)

Suppose (a1)–(a3) hold for (2.4.8), (2.4.9). Denote by x(t), X(t, s) the solution
and the fundamental function of problem (2.2.2), (2.2.3), where the initial point t0
is replaced by t1 and by y(t), Y (t, s) the solution and the fundamental function of
problem (2.4.8), (2.4.9).

Theorem 2.5 Suppose that condition 2) of Theorem 2.1 holds for (2.2.1), x(t) > 0
and

ak(t) ≥ bk(t) ≥ 0, g(t) ≥ f (t), ϕ(t) ≥ ψ(t), t < t1, y0 ≥ x0.

Then y(t) ≥ x(t) > 0.

Proof Denote by u(t) a nonnegative solution of (2.3.2). Inequality ak(t) ≥ bk(t)

yields that the function u(t) is also a solution of the inequality corresponding to
(2.3.2) for (2.4.8). Hence, by Theorem 2.1 we have X(t, s) > 0 and Y(t, s) > 0 for
t0 ≤ s < t .

Equation (2.2.2) can be rewritten in the form

ẋ(t) +
m∑

k=1

bk(t)x
(
hk(t)

) =
m∑

k=1

[
bk(t) − ak(t)

]
x
(
hk(t)

) + f (t), t ≥ t1,

which implies

x(t) = Y(t, t1)x0 −
m∑

k=1

∫ t

t1

Y(t, s)bk(s)ϕ
(
hk(s)

)
ds

+
∫ t

t1

Y(t, s)f (s)ds −
m∑

k=1

∫ t

t1

Y(t, s)
[
ak(s) − bk(s)

]
x
(
hk(s)

)
ds

≤ Y(t, t1)y0 −
m∑

k=1

∫ t

t1

Y(t, s)bk(s)ψ
(
hk(s)

)
ds +

∫ t

t1

Y(t, s)g(s)ds = y(t),

where ϕ(hk(s)) = ψ(hk(s)) = 0 if hk(s) ≥ t1 and x(hk(s)) = 0 if hk(s) < t1. There-
fore y(t) ≥ x(t) > 0. �

Corollary 2.3 Suppose that ak(t) ≥ 0, condition 2) of Theorem 2.1 holds for (2.2.1)
and x and y are positive solutions of (2.2.1) and (2.3.1) for t ≥ t1, respectively. If
x(t) ≤ y(t) for t < t1 and x(t1) = y(t1), then x(t) ≥ y(t) for t ≥ t1.
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Since the fundamental function of any ordinary differential equation ẋ(t) +
a(t)x(t) = 0 is positive, we immediately obtain the following result.

Corollary 2.4 If ak(t) ≥ 0, k = 1, · · · ,m, then the fundamental function X(t, s) of
the equation

ẋ(t) + a(t)x(t) −
m∑

k=1

ak(t)x
(
hk(t)

) = 0, t ≥ 0,

is positive for 0 ≤ s ≤ t . In addition, for the solutions y and z of the inequalities

ẏ(t) + a(t)y(t) −
m∑

k=1

ak(t)y
(
hk(t)

) ≤ 0, t ≥ 0,

ż(t) + a(t)z(t) −
m∑

k=1

ak(t)z
(
hk(t)

) ≥ 0, t ≥ 0,

satisfying for any t0 the equality x(t) = y(t) = z(t), t ≤ t0, we have y(t) ≤ x(t) ≤
z(t) for t > t0.

2.5 Nonoscillation Conditions, Part 1

Inequality (2.4.5) can be applied to obtain explicit nonoscillation conditions. Corol-
lary 2.2, Part 2, immediately implies the following result if we assume u(t) ≡ λ.

Theorem 2.6 Suppose that there exist a point t1 ≥ 0 and a constant λ > 0 such that

m∑

j=1

a+
j (t)eλ(t−hk(t)) ≤ λ, t ≥ t1.

Then the fundamental function X(t, s) of (2.2.1) is positive for t ≥ s ≥ t1.

Theorem 2.7 Suppose that there exists a point t1 ≥ 0 such that
∫ t

mink{hk(t)}

m∑

j=1

a+
j (s)ds ≤ 1

e
, t ≥ t1. (2.5.1)

Then the fundamental function X(t, s) of (2.2.1) is positive for t ≥ s ≥ t1.

Proof Let us demonstrate that the function

u(t) = e

m∑

k=1

a+
k (t)

is a nonnegative solution of (2.4.5). By (2.5.1), we have for t ≥ t1
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m∑

k=1

a+
k (t) exp

{∫ t

hk(t)

u(s)ds

}

=
m∑

k=1

a+
k (t) exp

{∫ t

hk(t)

e

m∑

i=1

a+
i (s)ds

}

≤
m∑

k=1

a+
k (t) exp

{
e

∫ t

mink hk(t)

m∑

i=1

a+
i (s)ds

}

≤
m∑

k=1

a+
k (t)e = u(t),

so u(t) satisfies (2.4.5). By Corollary 2.2, the fundamental function of (2.2.1) is
positive for t ≥ t1. �

Let us note that the constant 1/e is the best possible since the equation

ẋ(t) + x(t − τ) = 0

is oscillatory for τ > 1/e.

Corollary 2.5 Suppose

lim sup
t→∞

∫ t

mink{hk(t)}

m∑

j=1

a+
j (s)ds <

1

e
. (2.5.2)

Then there exists an eventually positive solution of (2.2.1).

Corollary 2.6 Suppose that there exists τ > 0 such that t −hk(t) ≤ τ , k = 1, · · · ,m
and

∫ ∞

t0

m∑

k=1

a+
k (s)ds < ∞.

Then there exists an eventually positive solution of (2.2.1).

In the monograph [192], the authors construct a counterexample that demon-
strates that condition (2.5.2) is not necessary for nonoscillation of (2.2.1).

By [192, Theorem 3.4.3], the inequality

lim sup
t→∞

∫ t

maxk{hk(t)}

m∑

j=1

aj (s)ds ≤ 1 (2.5.3)

is necessary for nonoscillation of (2.2.1) with nonnegative coefficients ak(t) ≥ 0 and
monotonically nondecreasing deviations of arguments hk(t).

Let us find sufficient nonoscillation conditions when the number

lim sup
t→∞

∫ t

maxk{hk(t)}

m∑

j=1

a+
j (s)ds

is between 1/e and 1.
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First, consider (2.2.1) with constant delays τk(t) = const:

ẋ(t) +
m∑

k=1

ak(t)x(t − τk) = 0, τk > 0, k = 1, · · · ,m. (2.5.4)

Theorem 2.8 Suppose that there exist a number n0 ≥ 0 and a sequence {λn}∞n=n0
,

where all λn > 1, such that
m∑

k=1

a+
k (t) ≤ λne

−(λn−1(nτ−t)+λn(t−(n−1)τ )), (n − 1)τ ≤ t ≤ nτ, n ≥ n0, (2.5.5)

where τ = maxk τk .
Then (2.5.4) has a positive fundamental function X(t, s) for t ≥ s ≥ t0 = n0τ .

Proof Let us demonstrate that the function

u(t) = λn, (n − 1)τ ≤ t ≤ nτ, n ≥ n0,

is a solution of (2.4.5) for t ≥ n0.
In the interval (n − 1)τ ≤ t ≤ nτ , we have

m∑

k=1

a+
k (t) exp

{∫ t

t−τk

u(s)ds

}

≤
m∑

k=1

a+
k (t) exp

{∫ t

t−τ

u(s)ds

}

=
m∑

k=1

a+
k (t) exp

{∫ (n−1)τ

t−τ

λn−1ds +
∫ t

(n−1)τ

λnds

}

=
m∑

k=1

a+
k (t) exp

{
λn−1(nτ − t) + λn

(
t − (n − 1)τ

)} ≤ λn = u(t).

Hence (2.4.5) is equivalent to (2.5.5), which completes the proof. �

By Theorem 2.4, we obtain a more general result.

Corollary 2.7 Suppose there exists τk > 0 such that t −hk(t) ≤ τk . If all the condi-
tions of Theorem 2.8 hold, then (2.2.1) has a positive fundamental function X(t, s)

for t ≥ s ≥ t0.

Example 2.1 Consider the equation

ẋ(t) + a(t)x(t − τ) = 0, (2.5.6)

where τ = 1 and

a(t) =
{

e−(2n−t+1), 2n − 1 ≤ t < 2n, n ≥ 1,

2e−(t−2n+1), 2n ≤ t < 2n + 1, n ≥ 0.
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Denote

λ2n = 1, λ2n−1 = 2.

Then all the conditions of Theorem 2.8 hold, and thus (2.5.6) has a positive funda-
mental function.

In addition, we have

lim sup
t→∞

∫ t

t−1
a(s)ds = 2

(
e−1 − e−2) >

1

e
.

Hence (2.5.2) does not hold for (2.5.6). Thus (2.5.2) is not necessary for nonoscil-
lation of (2.2.1).

We apply the idea of Example 2.1 to prove the following theorem.

Theorem 2.9 For any α ∈ (1/e,1), there exists nonoscillatory equation (2.5.6) with
a(t) ≥ 0 such that

sup
t≥τ

∫ t

t−τ

a(s)ds = α. (2.5.7)

Proof It is sufficient to prove the theorem for τ = 1. Suppose λ > 0, a > 1. Consider
(2.5.6), where τ = 1 and

a(t) =
{

λe−(2λ(a−1)n−λ(a−1)t+λ), 2n − 1 ≤ t < 2n, n ≥ 1,

λae−(λ(a−1)t−2λ(a−1)n+λ), 2n ≤ t < 2n + 1, n ≥ 0.

Denote

λ2n = λ, λ2n−1 = λa.

Then all the conditions of Theorem 2.8 hold, and hence (2.5.6) has a positive fun-
damental function.

We have

sup
t≥1

∫ t

t−1
a(s)ds = a

a − 1

(
e−λ − e−λa

)
.

The function

f (λ) = a

a − 1

(
e−λ − e−λa

)

has the maximum maxf (λ) = f (λ0) = e−λ0 at the point λ0 = lna
a−1 . Let us note that

lim
a→1

lna

a − 1
= 1, lim

a→∞
lna

a − 1
= 0,

and take λ = lna
a−1 in the definition of function a(t). Then

sup
t≥1

∫ t

t−1
a(s)ds = e− lna/(a−1).
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Since

lim
a→1

sup
t≥1

∫ t

t−1
a(s)ds = 1/e, lim

a→∞ sup
t≥1

∫ t

t−1
a(s)ds = 1,

the continuous function supt≥1

∫ t

t−1 a(s)ds of a takes all the values from the interval
(1/e,1), which completes the proof. �

Now we proceed to an integral nonoscillation condition similar to Theorem 2.8.

Theorem 2.10 Suppose that there exist n0 ≥ 0 and a sequence {λn}∞n=n0
, where all

λn > 1, such that

λn−1

∫ (n−1)τ

t−τ

m∑

k=1

a+
k (s)ds + λn

∫ t

(n−1)τ

m∑

k=1

a+
k (s)ds ≤ lnλn, (n − 1)τ ≤ t ≤ nτ,

(2.5.8)

n ≥ n0, where τ = maxk τk . Then (2.5.4) has a positive fundamental function for
t ≥ s ≥ t0 = n0τ .

Proof The proof is similar to the proof of the previous theorem if we put

u(t) = λna(t), (n − 1)τ ≤ t ≤ nτ, n ≥ n0,

where a(t) = ∑m
k=1 a+

k (s)ds. �

Corollary 2.8 Suppose there exists τk > 0 such that t − hk(t) ≤ τk . If all the con-
ditions of Theorem 2.10 hold, then (2.2.1) has a positive fundamental function for
t ≥ s ≥ t0.

Let us note that if in (2.5.6) we substitute the maximum delay by the minimum
delay

lim sup
t→∞

∫ t

mink hk(t)

m∑

j=1

aj (s)ds ≤ 1, (2.5.9)

this condition is not necessary for nonoscillation.

Example 2.2 The equation

x′(t) + 0.01x(t − 10) + 0.3x(t) = 0 (2.5.10)

is nonoscillatory since the characteristic equation λ + 0.01e−10λ + 0.3 = 0 has two
real roots, λ1 ≈ −0.3261 and λ1 ≈ −0.5536. However, (2.5.9) is not satisfied since
10(0.01 + 0.3) = 3.01 > 1.
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2.6 Nonoscillation Conditions, Part 2

The explicit nonoscillation condition in (2.5.1) is easily checked but contains only
“the worst delay”. To give a sharper result, where all delays are included, denote

Aij = sup
t≥t1

∫ t

hi (t)

a+
j (s)ds, 1 ≤ i, j ≤ m. (2.6.1)

Theorem 2.11 Suppose there exist a point t1 ≥ 0 and positive numbers xi, i =
1, · · · ,m such that Aij < ∞, t ≥ t1 and

lnxi ≥
m∑

j=1

Aijxj , i = 1, · · · ,m. (2.6.2)

Then (2.2.1) has a positive fundamental function X(t, s) for t ≥ s ≥ t1.

Proof Inequality (2.6.2) implies that for any t ≥ t1

xk ≥ exp

{
m∑

j=1

∫ t

hk(t)

xj a
+
j (s)ds

}
.

After introducing the function

u(t) =
m∑

j=1

xja
+
j (t), t ≥ t1, u(t) = 0, t ≤ t1,

we obtain
m∑

k=1

a+
k (t) exp

{∫ t

hk(t)

u(s)ds

}

=
m∑

k=1

a+
k (t) exp

{∫ t

hk(t)

m∑

j=1

xja
+
j (s)ds

}

≤
m∑

k=1

a+
k (t)xk = u(t).

Then all the conditions of Part 2 of Corollary 2.2 are satisfied. Hence (2.2.1) has a
positive fundamental function for t ≥ t1. �

Theorem 2.11 contains only implicit nonoscillation conditions. To derive explicit
conditions from this theorem, we consider first the equation with two delays

ẋ(t) + a(t)x
(
h(t)

) + b(t)x
(
g(t)

) = 0, (2.6.3)

where

a(t) ≥ 0, b(t) ≥ 0, h(t) ≤ t, g(t) ≤ t.

Similar to (2.6.1), we denote (and assume A,B,C,D are finite)
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A = sup
t≥t1

∫ t

h(t)

a+(s)ds, B = sup
t≥t1

∫ t

h(t)

b+(s)ds,

C = sup
t≥t1

∫ t

g(t)

a+(s)ds, D = sup
t≥t1

∫ t

g(t)

b+(s)ds.

(2.6.4)

By Theorem 2.11, the existence of positive solutions of the system

lnx1 ≥ Ax1 + Bx2, lnx2 ≥ Cx1 + Dx2, (2.6.5)

implies nonoscillation of (2.6.3).

Theorem 2.12 Let

lim sup
t→∞

∫ t

g(t)

a+(s)ds = lim sup
t→∞

∫ t

g(t)

b+(s)ds = 0 (2.6.6)

and

AeB <
1

e
. (2.6.7)

Then (2.6.3) has an eventually positive fundamental function.

Proof It is sufficient to prove the existence of a positive solution (x1, x2), x1 > 0,
x2 > 0 for the system

lnx1 > A0x1 + B0x2, lnx2 > 0, (2.6.8)

where

A0 = lim sup
t→∞

∫ t

h(t)

a+(s)ds, B0 = lim sup
t→∞

∫ t

h(t)

b+(s)ds.

Assume first A0 > 0, B0 > 0, and put x1 = 1
A0

. Then (2.6.8) takes the form

B0 < B0x2 < −1 − lnA0.

By (2.6.7), there exists C > 0 such that B0 < C < −1 − lnA0. Therefore the pair

(x1, x2) =
(

1

A0
,

C

B0

)

will be a solution of the system (2.6.8).
If A0 > 0, B0 = 0, then the pair (x1, x2), where x1 = e, x2 > 1, is a solution

of (2.6.8).
The case A0 = 0,B0 > 0 is treated similarly.
Existence of a positive solution of (2.6.8) in the case A0 = B0 = 0 is obvi-

ous. �

Example 2.3 Consider the equation

ẋ(t) + ax(t − 1) + bx
(
g(t)

) = 0, (2.6.9)
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where a, b are positive numbers, limt→∞(t − g(t)) = 0. We have A = a, B = b,
C = D = 0. Then the condition

aeb <
1

e

implies nonoscillation of (2.6.9).

Example 2.4 Consider the equation

ẋ(t) + a

t
x

(
t

μ

)
+ b

t
x(t − τ) = 0, t ≥ t0 > 0, (2.6.10)

where a > 0, b > 0, μ > 1, τ > 0. We have A = a lnμ, B = b lnμ, C = D = 0.
Hence, if the condition

aμb <
1

e lnμ

holds, then (2.6.10) has a nonoscillatory solution.

Example 2.5 Consider the equation

ẋ(t) + a

t ln t
x
(
tα

) + b

t
x(t − τ) = 0, t ≥ t0 > 1, (2.6.11)

where a > 0, b > 0, 1 > α > 0, τ > 0. We have A = a ln 1
α

, B = b ln 1
α

, C = D = 0.
Hence, if the condition

aα−b <
1

e ln 1
α

holds, then (2.6.11) has a nonoscillatory solution.

Theorem 2.13 Suppose that for some t1 ≥ 0 at least one of the following conditions
holds:

1) 0 < A ≤ 1
e
, B > 0, and there exists a number y0 > 0 such that

y0 ≤ −1 + lnA

B
,

C

A
+ Dy0 ≤ lny0;

2) C > 0, 0 < D ≤ 1
e
, and there exists a number x0 > 0 such that

x0 ≤ −1 + lnD

C
,

B

D
+ Ax0 ≤ lnx0.

Then the fundamental function X(t, s) of (2.6.3) is positive for t ≥ s ≥ t1.

Proof Suppose the inequalities in 1) hold. The function y = (lnx − Ax)/B has the
unique maximum ymax = − 1+lnA

B
at the point xmax = 1

A
. The inequality

−(1 + lnA) ≥ By0 > 0

implies ymax > 0, while y0 ≤ − 1+lnA
B

yields that the point (xmax, y0) satisfies the
first inequality in (2.6.5) in the case y0 < ymax. Since C

A
+ Dy0 < lny0, this point
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also satisfies the second inequality in (2.6.5). If y0 = ymax, then there exists y1 < y0

for which the inequality C
A

+ Dy1 < lny1 still holds. Then (xmax, y1) is a solution
of (2.6.5). If 2) holds, the proof is similar. �

Corollary 2.9 Suppose that there exists a point t1 ≥ 0 such that at least one of the
following conditions holds:

0 < A ≤ 1

e
, B > 0,

C

A
− D(1 + lnA)

B
≤ ln

(
−1 + lnA

B

)
, (2.6.12)

C > 0, 0 < D ≤ 1

e
,

B

D
− A(1 + lnD)

C
≤ ln

(
−1 + lnD

C

)
. (2.6.13)

Then the fundamental function X(t, s) of (2.6.3) is positive for t ≥ s ≥ t1.

Proof If (2.6.12) holds, then there exists ε > 0 such that for y0 = − 1+lnA
B

− ε the
first condition of Theorem 2.13 is satisfied. Similarly, (2.6.13) implies the second
condition. �

Remark 2.2 In Theorem 2.13, it is assumed that either A > 0, B > 0 or C > 0,
D > 0. Including the cases where these conditions are not satisfied, by analyzing
(2.6.5) we immediately obtain the following sufficient nonoscillation conditions:

1. B = 0, D > 0, A < 1/e, 1 + lnD + C/e < 0;
2. C = 0, A > 0, D < 1/e, 1 + lnA + B/e < 0;
3. A = 0, D > 0, CeB/D + 1 + lnD < 0;
4. D = 0, A > 0, beC/A + lnA + 1 < 0;
5. B = 0, C = 0, A < 1/e, D < 1/e;
6. A = 0, C = 0, D < 1/e;
7. B = 0, D = 0, A < 1/e.

For A = D = 0, the situation is a little bit more complicated in that there exists
an eventually positive solution if the following condition is satisfied:

8. A = D = 0, and there exists either x > 0 such that lnx > BeCx or y > 0 such
that lny > CeBy .

Example 2.6 Consider the equation

ẋ(t) + 0.2

π
sin2 tx(t − π) + 0.2

π
cos2 tx(t − 2π) = 0. (2.6.14)

By simple calculations, we have A = B = 0.1, C = D = 0.2. Condition (2.6.12)
in Corollary 2.9 is not satisfied, but inequality (2.6.13) holds. Hence (2.6.14) has an
eventually positive solution.

Figure 2.1 illustrates the domain for (x, y) where the inequalities of type (2.6.5)
hold:

lnx ≥ 0.1x + 0.1y, lny ≥ 0.2x + 0.2y. (2.6.15)
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Fig. 2.1 In the domain
between the curves, the
system of inequalities
(2.6.15) has a positive
solution, so (2.6.14) has an
eventually positive solution.
Here A = B = 0.1,
C = D = 0.2

We observe that the maximum of f (x) = 10 ln(x) − x is not in the domain between
the curves (thus, (2.6.12) is not satisfied), while the maximum of the function g(y) =
5 ln(y) − y is in the intersection domain, so (2.6.13) holds. It should be noted that
Theorem 2.7 fails for this equation.

Let us present different sufficient conditions for the existence of positive solu-
tions.

Theorem 2.14 Suppose that there exists a point t1 ≥ 0 such that at least one of the
following conditions holds:

1) There exists y0 > 0 such that y0 < (1 − Ae)/B , Ce + Dy0 < lny0.
2) There exists x0 > 0 such that x0 < (1 − De)/C, Ax0 + Be < lnx0.

Then the fundamental function of (2.6.3) is positive.

Proof Suppose 1) holds. Then Ae < 1 and (e, y0) is a solution of the system of
inequalities (2.6.5). Similarly, if 2) holds, then (x0, e) is a solution of (2.6.5). �

Remark 2.3 In Theorem 2.14, the value x = e was chosen to minimize the coeffi-
cient of x in the first inequality of the system

(
A − lnx

x

)
x + By < 0, Cx +

(
D − lny

y

)
y < 0,

which is equivalent to (2.6.5), and y = e minimizes the coefficient of y in the second
inequality.

Corollary 2.10 Suppose that there exists a point t1 ≥ 0 such that at least one of the
following inequalities holds:

Ce + D

B
(1 − Ae) ≤ ln

(
1 − Ae

B

)
, (2.6.16)
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Be + A

C
(1 − De) ≤ ln

(
1 − De

C

)
. (2.6.17)

Then the fundamental function of (2.6.3) is positive.

Let us modify Example 2.6 to demonstrate that there are cases where either The-
orem 2.13 or Theorem 2.14 can be applied while the other one fails.

Example 2.7 Consider the following modified version of (2.6.14):

ẋ(t) + 0.5

π
sin2 tx(t − π) + 0.08

π
cos2 tx(t − 2π) = 0. (2.6.18)

Then A = 0.25, B = 0.04, C = 0.5, D = 0.08 and (2.6.16) becomes

0.5e + 2(1 − 0.25e) = 2 < 2.08 ≈ ln

(
1 − 0.25e

0.04

)
;

i.e., (2.6.16) is satisfied and there exists an eventually positive solution of (2.6.18).
Theorem 2.7 fails for (2.6.18) since 0.5 + 0.08 > 1/e. Simple computations demon-
strate that (2.6.12), (2.6.13) and (2.6.17) also fail for (2.6.18).

On the other hand, for the equation

ẋ(t) + 0.2

π
sin2 tx(t − π) + 0.25

π
cos2 tx(t − 2π) = 0 (2.6.19)

with A = 0.1, B = 0.125, C = 0.2, D = 0.25, inequality (2.6.13) is satisfied. This
implies existence of an eventually positive solution for (2.6.19), while Theorem 2.7,
(2.6.16), (2.6.17) and (2.6.12) fail.

Next, consider (2.2.1) with several delays.

Theorem 2.15 Suppose that there exists a point t1 ≥ 0 and an index k,1 ≤ k ≤ m,
such that

Bi :=
∑

j �=k

Aij ≤ 1

e
, i = 1,2, · · · ,m, (2.6.20)

where Aij are defined in (2.6.1), and there exists z > 0 satisfying the inequalities

z ≤ min
i �=k

1 − Bie

Aik

,
∑

j �=k

Akj e + Akkz ≤ ln z. (2.6.21)

Then the fundamental function of (2.2.1) is positive.

Proof Suppose that such k exists. Let xi = e, i �= k;xi = z, i = k. Then the first
inequality in (2.6.21) implies all inequalities in (2.6.2) but the k-th one, which is a
corollary of the latter inequality in (2.6.21). Thus (2.6.2) has a positive solution, so
(2.2.1) has an eventually positive solution, which completes the proof. �
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Corollary 2.11 Suppose there exist a point t1 ≥ 0 and an index k, 1 ≤ k ≤ m, such
that

e
∑

j �=k

Akj + AkkB ≤ lnB, (2.6.22)

where B = mini �=k
1−Bie
Aik

and Akj are denoted by (2.6.1). Then the fundamental
function of (2.2.1) is positive.

Proof Due to the continuity of the function lnx − Akkx, there exists ε > 0 such
that if we substitute z = B − ε instead of B , the inequality (2.6.22) is still valid;
i.e., the second inequality in (2.6.21) is satisfied. Then z ≤ 1−Bie

Aik
for any i �= k,

where Bi are defined in (2.6.20), so the first inequality in (2.6.21) is also satisfied.
By Theorem 2.15, (2.2.1) has an eventually positive solution. �

Using Theorem 2.4, we can also apply Theorem 2.13 to general equations with
several delays.

Theorem 2.16 Suppose ak(t) ≥ 0, k = 1, · · · ,m, and let I1 ⊂ I = {1, · · · ,m}, I2 =
I\I1. Denote

a(t) =
∑

k∈I1

ak(t), b(t) =
∑

k∈I2

ak(t), h(t) = min
k∈I1

hk(t), g(t) = min
k∈I2

hk(t).

Here we assume h(t) ≡ t or g(t) ≡ t if I1 = ∅ or I2 = ∅, respectively. Suppose that
there exists a point t1 ≥ 0 such that the hypotheses of Theorem 2.13 or Remark 2.2
are satisfied, where A,B,C,D are defined in (2.6.4). Then the fundamental function
of (2.2.1) is positive.

Proof Nonoscillation of (2.6.3) and Theorem 2.4 imply nonoscillation of (2.2.1). �

Remark 2.4 Theorem 2.16 contains 2m different nonoscillation conditions. In par-
ticular, if I1 = I, I2 = ∅, then Remark 2.2 implies Theorem 2.7. Indeed, in this case
we have a(t) = ∑m

k=1 ak(t), b(t) ≡ 0, h(t) = mink∈I hk(t), g(t) ≡ t . We have

A = sup
t≥t1

∫ t

h(t)

m∑

k=1

ak(s)ds, B = C = D = 0.

If we take x1 = e, x2 > 1, then inequalities (2.6.5) have the form A ≤ 1
e
, lnx2 > 0,

which is equivalent to (2.5.1).

2.7 Oscillation Conditions

There are many explicit oscillation conditions for equations with one delay and
only a few for equations with several delays (2.2.1). We present here some explicit
oscillation tests. First, let us mention two known oscillation conditions.
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Lemma 2.2 [192] Suppose ak(t) ≥ 0 and at least one of the following conditions
holds:

1)

lim inf
t→∞

∫ t

maxk hk(t)

m∑

i=1

ai(s)ds >
1

e
,

2) hk are nondecreasing and

lim sup
t→∞

∫ t

maxk hk(t)

m∑

i=1

ai(s)ds > 1.

Then all solutions of (2.2.1) are oscillatory.

Lemma 2.3 [192] Suppose ak(t) ≥ 0, k = 1, · · · ,m and

lim inf
t→∞

m∑

k=1

ak(t)
(
t − hk(t)

)
>

1

e
.

Then all solutions of (2.2.1) are oscillatory.

The conditions of Lemma 2.2 are given in the integral form but contain only the
worst delay function. The inequality of Lemma 2.3 contains all the delays but is
presented in the pointwise form. The following result contains all the delays and
has the integral form.

Theorem 2.17 Suppose ak(t) ≥ 0, k = 1, · · · ,m and there exists a set of indices
J ⊂ {1, · · · ,m} such that

∑
k∈J ak(t) �= 0 almost everywhere,

∫ ∞
t0

∑m
i=1 ai(s)ds =

∞ and

lim inf
t→∞

m∑

k=1

ak(t)∑
i∈J ai(t)

∫ t

hk(t)

∑

i∈J

ai(s)ds >
1

e
. (2.7.1)

Then all solutions of (2.2.1) are oscillatory.

Proof After the substitution

s =
∫ t

t0

∑

k∈J

ak(τ )dτ, y(s) = x(t), lk(s) =
∫ hk(t)

t0

∑

k∈J

ak(τ )dτ,

(2.2.1) has the form

ẏ(s) +
m∑

k=1

ak(t)∑
i∈J ai(t)

y
(
lk(s)

) = 0. (2.7.2)

Evidently oscillation of (2.2.1) is equivalent to oscillation of (2.7.2).
Since s − lk(s) = ∫ t

hk(t)

∑
i∈J ai(s)ds, Lemma 2.3 and condition (2.7.1) imply

this theorem. �



2.7 Oscillation Conditions 45

Remark 2.5 The first part of Lemma 2.2 can be obtained as a corollary of Theo-
rem 2.17 for J = {1, · · · ,m}.

Consider now (2.2.1) with two delays:

ẋ(t) + a(t)x
(
h(t)

) + b(t)x
(
g(t)

) = 0. (2.7.3)

Corollary 2.12 Suppose a(t) ≥ 0, b(t) ≥ 0 and at least one of the following condi-
tions holds:

1. a(t) �= 0 almost everywhere (a.e.) and

lim inf
t→∞

(∫ t

h(t)

a(s)ds + b(t)

a(t)

∫ t

g(t)

a(s)ds

)
>

1

e
;

2. b(t) �= 0 a.e. and

lim inf
t→∞

(
a(t)

b(t)

∫ t

h(t)

b(s)ds +
∫ t

g(t)

b(s)ds

)
>

1

e
;

3. a(t) + b(t) �= 0 a.e. and

lim inf
t→∞

(
a(t)

a(t) + b(t)

∫ t

h(t)

[
a(s) + b(s)

]
ds + b(t)

a(t) + b(t)

∫ t

g(t)

[
a(s) + b(s)

]
ds

)

>
1

e
.

Then all solutions of (2.7.3) are oscillatory.

Proof We fix the sets of indices J = {1}, J = {2} and J = {1,2}, respectively. �

Consider (2.7.3) with a nondelay term,

ẋ(t) + a(t)x(t) + b(t)x
(
g(t)

) = 0. (2.7.4)

Corollary 2.13 Suppose a(t) ≥ 0, b(t) ≥ 0, a(t) �= 0 a.e. and

lim inf
t→∞

b(t)

a(t)

∫ t

g(t)

a(s)ds >
1

e
.

Then all solutions of (2.7.3) are oscillatory.

Example 2.8 By Part 3 of Corollary 2.12, the equation

ẋ(t) + [
1 + sin(2πt)

]
x
(
h(t)

) + γ
[
1 + sin(2πt)

]
x(t − 1) = 0, (2.7.5)

where h(t) ≤ t , limt→∞ h(t) = t , is oscillatory if

γ >
1

e
(2.7.6)

since
∫ t

t−1

[
1 + sin(2πs)

]
ds = 1 for any t,

b(t)

a(t)
= γ.
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However, Lemma 2.2 cannot be applied to establish oscillation since max{t, t − 1}
= t , and the condition of Lemma 2.3 is not satisfied since lim inft→∞ γ [1 +
sin(2πt)] = 0 for any γ .

2.8 Estimations of Solutions

First let us obtain a lower estimation of the fundamental function.

Theorem 2.18 Suppose conditions of Theorem 2.7 hold. Then

X(t, s) ≥ exp

{
−e

∫ t

s

m∑

k=1

a+
k (s)ds

}
, t ≥ s ≥ t1.

Proof Suppose first that ak(t) ≥ 0, t ≥ t0 and conditions of Theorem 2.1, Part 2,
hold. In the proof of Theorem 2.1, it was shown that

X(t, t1) ≥ exp

{
−

∫ t

t1

u(s)ds

}
, t ≥ t1,

where the function u(t) was denoted in Part 2 of Theorem 2.1.
The same calculations lead to the estimate

X(t, s) ≥ exp

{
−

∫ t

s

u(s)ds

}
, t ≥ s ≥ t1.

By the proof of Theorem 2.7, the function u(t) = e
∑m

k=1 a+
k (t) satisfies all the

conditions of Part 2 of Theorem 2.1. Hence the theorem is true for the case ak(t) ≥ 0.
Consider now the general case and denote by X+(t, s) the fundamental function

of the equation

ẋ(t) +
m∑

k=1

a+
k (t)x

(
hk(t)

) = 0.

As was proven before, X+(t, s) ≥ exp{−e
∫ t

s

∑m
k=1 a+

k (s)ds}, t ≥ s ≥ t1.
The fundamental function X(t, s) of (2.2.1) is the solution of the initial value

problem

ẋ(t) +
m∑

k=1

a+
k (t)x

(
hk(t)

) −
m∑

k=1

a−
k (t)x

(
hk(t)

) = 0, t ≥ s,

x(t) = 0, t < s, x(s) = 1.

Hence, by solution representation formula (2.2.5) for t ≥ t1,

X(t, s) = X+(t, s) +
∫ t

s

X+(t, τ )

m∑

k=1

a−
k (τ )X

(
hk(τ ), s

)
dτ.
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By Theorem 2.7, we have X(t, s) > 0, t ≥ s ≥ t1. Then

X(t, s) ≥ X+(t, s) ≥ exp

{
−e

∫ t

s

m∑

k=1

a+
k (s)ds

}
. �

Now let us proceed to upper estimates of the fundamental function.

Theorem 2.19 In (2.2.1), let

ak(t) ≥ 0, X(t, s) > 0, t ≥ s ≥ t0, t − hk(t) ≤ H, t ≥ t0.

Then, for t > s ≥ t0,

0 < X(t, s) ≤ Y(t, s) :=
{

exp{− ∫ t

s+H

∑m
k=1 ak(τ )dτ }, t ≥ s + H,

1, s ≤ t ≤ s + H.

Proof It is sufficient to prove the theorem for s = t0 since the general case is con-
sidered similarly. Denote

x(t) = X(t, t0), y(t) = Y(t, t0), t > t0 + H, y(t) = X(t, t0), t ≤ t0 + H.

Then, x(t) = y(t) for t ≤ t0 + H , and for t ≥ t0 + H we have

ẏ(t) +
m∑

k=1

ak(t)y
(
hk(t)

)

= −
m∑

k=1

ak(t) exp

{
−

∫ t

t0+H

m∑

k=1

ak(τ )dτ

}
+

m∑

k=1

ak(t)rk(t)

=
m∑

k=1

ak(t)

[
rk(t) − exp

{
−

∫ t

t0+H

m∑

k=1

ak(τ )dτ

}]
≥ 0,

where

rk(t) =
{

exp{− ∫ hk(t)

t0+H

∑m
k=1 ak(τ )dτ }, hk(t) ≥ t0 + H,

X(t, t0), t0 ≤ hk(t) ≤ t0 + H.

Theorem 2.5 implies y(t) ≥ x(t). Hence Y(t, t0) ≥ X(t, t0), t ≥ t0 + H .
Inequality X(t, t0) ≤ 1 is valid since X(t0, t0) = 1 and X′

t (t, t0) ≤ 0. Hence 1 =
Y(t, t0) ≥ X(t, t0) for t0 ≤ t ≤ t0 + H . �

Corollary 2.14 Let

ak(t) ≥ 0,

m∑

k=1

ak(t) ≥ a > 0, X(t, s) > 0, t ≥ s ≥ t0, t − hk(t) ≤ H, t ≥ t0.

Then, for t > s ≥ t0,

0 < X(t, s) ≤ Y(t, s) :=
{

exp{−a(t − s − H)}, t ≥ s + H,

1, s ≤ t ≤ s + H.
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Theorem 2.20 Suppose ak(t) ≥ 0,
∑m

k=1 ak(t) ≥ a > 0, X(t, s) > 0, t ≥ s ≥ t0,
t − hk(t) ≤ H , t ≥ t0. Then, for the solution of problem (2.2.2), (2.2.3), we have the
estimates

∣∣x(t)
∣∣ ≤ ∣∣x(t0)

∣∣ +
(

‖f ‖ +
m∑

k=1

‖ak‖‖ϕ‖
)

(t − t0), t0 ≤ t < t0 + H,

∣∣x(t)
∣∣ ≤

(
∣∣x(t0)

∣∣ + 1

a

(
eaH − 1

) m∑

k=1

‖ak‖‖ϕ‖
)

e−a(t−t0−H) + ‖f ‖
a

eaH ,

t ≥ t0 + H,

where

‖ϕ‖ = sup
t0−H≤t≤t0

∣∣ϕ(t)
∣∣, ‖f ‖ = sup

t≥t0

∣∣f (t)
∣∣, ‖ak‖ = sup

t≥t0

∣∣ak(t)
∣∣.

Proof By solution representation formula (2.2.5), we have

∣∣x(t)
∣∣ ≤ X(t, t0)

∣∣x(t0)
∣∣ +

∫ t

t0

X(t, s)

(
m∑

k=1

ak(s)
∣∣ϕ

(
hk(s)

)∣∣ + ∣∣f (s)
∣∣
)

ds,

where ϕ(t) = 0, t ≥ t0.
Suppose first t0 ≤ t ≤ t0 + H . Then

∣∣x(t)
∣∣ ≤ ∣∣x(t0)

∣∣ +
∫ t

t0

(
m∑

k=1

ak(s)
∣∣ϕ

(
hk(s)

)∣∣ + ∣∣f (s)
∣∣
)

ds

≤ ∣∣x(t0)
∣∣ +

(
‖f ‖ +

m∑

k=1

‖ak‖‖ϕ‖
)

(t − t0).

Next, let t ≥ t0 + H . Then

∣∣x(t)
∣∣ ≤ ∣∣x(t0)

∣∣e−a(t−t0−H) +
∫ t0+H

t0

e−a(t−s−H)

m∑

k=1

ak(s)
∣∣ϕ

(
hk(s)

)∣∣ds

+
∫ t

t0

e−a(t−s−H)
∣∣f (s)

∣∣ds

≤ ∣∣x(t0)
∣∣e−a(t−t0−H) +

m∑

k=1

‖ak‖‖ϕ‖1

a

(
eaH − 1

)
e−a(t−t0−H) + ‖f ‖

a
eaH .

�

Another integral estimation of the fundamental function can be obtained using
the following result.

Theorem 2.21 Suppose ak(t) ≥ 0 and the fundamental function of (2.2.1) is posi-
tive: X(t, s) > 0, t ≥ s ≥ t0. Then there exists t1 ≥ t0 such that

0 ≤
∫ t

t1

X(t, s)

m∑

k=1

ak(s)ds ≤ 1. (2.8.1)
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Proof The function x(t) ≡ 1, t > t0, is a solution of the problem

ẋ(t) +
m∑

k=1

ak(t)x
(
hk(t)

) =
m∑

k=1

ak(t)χ(t0,∞)

(
hk(t)

)
, x(t) = 0, t ≤ t0,

where χ(t0,∞)(t) is the characteristic function of the interval (t0,∞).
Hence, by (2.2.5) we have

1 =
∫ t

t0

X(t, s)

m∑

k=1

ak(s)χ(t0,∞)

(
hk(s)

)
ds.

There exists t1 ≥ t0 such that all hk(t) ≥ t0 for t ≥ t1, and thus for any t ≥ t1

∫ t1

t0

X(t, s)

m∑

k=1

ak(s)χ(t0,∞)

(
hk(s)

)
ds +

∫ t

t1

X(t, s)

m∑

k=1

ak(s)ds = 1,

which implies inequality (2.8.1). �

Remark 2.6 If t − hk(t) ≤ H , then we can take t1 = t0 + H .

2.9 Positivity of Solutions

Now we proceed to the analysis of positivity for solutions of problem (2.2.2),
(2.2.3). We will show that if the inequality (2.3.2) has a nonnegative solution and
the condition

0 ≤ ϕ(t) ≤ x(t0), t ≤ t0, x(t0) > 0, (2.9.1)

holds, then the solution of the initial value problem (2.2.1), (2.2.3) is positive. This
result supplements some statements in [192].

Theorem 2.22 Suppose ak(t) ≥ 0, f (t) ≥ 0 and there exists a nonnegative solution
of the inequality

u(t) ≥
m∑

k=1

ak(t)

∫ t

max{t0,hk(t)}
u(s)ds, t ≥ t0, (2.9.2)

for a certain t0 ≥ 0 and conditions (2.9.1) hold. Then the solution of problem (2.2.2),
(2.2.3) is positive for t ≥ t0.

Proof Let u(t) ≥ 0, t ≥ t0 be a solution of (2.9.2). Denote u(t) = 0, t < t0. Then

u(t) ≥
m∑

k=1

ak(t)

∫ t

hk(t)

u(s)ds, t ≥ t0.

Hence all conditions of Theorem 2.1 are satisfied, and thus the fundamental function
X(t, s) is positive: X(t, s) > 0 for t ≥ s ≥ t0.
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First assume f ≡ 0. Consider the auxiliary problem

ż(t) +
m∑

k=1

ak(t)z
(
hk(t)

) = 0, t ≥ t0, z(t) = x0, t ≤ t0. (2.9.3)

Denote

v(t) =
{

x0 exp{− ∫ t

t0
u(s)ds}, t ≥ t0,

x0, t < t0,

and for a fixed t ≥ t0 define the sets

N1(t) = {
k : hk(t) ≥ t0

}
, N2(t) = {

k : hk(t) < t0
}
.

We obtain

v̇(t) +
m∑

k=1

ak(t)v
(
hk(t)

)

= −x0u(t) exp

{
−

∫ t

t0

u(s)ds

}

+ x0

∑

k∈N1(t)

ak(t) exp

{
−

∫ hk(t)

t0

u(s)ds

}
+ x0

∑

k∈N2(t)

ak(t)

= −x0 exp

{
−

∫ t

t0

u(s)ds

}[
u(t) −

∑

k∈N1(t)

ak(t) exp

{∫ t

hk(t)

u(s)ds

}

−
∑

k∈N2(t)

ak(t) exp

{∫ t

t0

u(s)ds

}]

= −x0 exp

{
−

∫ t

t0

u(s)ds

}[
u(t) −

∑

k∈N1(t)

ak(t) exp

{∫ t

max{t0,hk(t)}
u(s)ds

}

−
∑

k∈N2(t)

ak(t) exp

{∫ t

max{t0,hk(t)}
u(s)ds

}]

= −x0 exp

{
−

∫ t

t0

u(s)ds

}[
u(t) −

m∑

k=1

ak(t) exp

{∫ t

max{t0,hk(t)}
u(s)ds

}]
≤ 0.

Hence v(t) is a solution of the problem

v̇(t) +
m∑

k=1

ak(t)v
(
hk(t)

) = g(t), t ≥ t0, v(t) = x0, t ≤ t0,

with g(t) ≤ 0. Theorem 2.5 implies that z(t) ≥ v(t) > 0.
Conditions (2.9.1) and Corollary 2.3 imply x(t) ≥ z(t) > 0, t ≥ t0. For the case

f ≡ 0, the theorem is proven. The general case also follows from Theorem 2.5 since
f (t) ≥ 0. �
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Corollary 2.15 Suppose ak(t) ≥ 0, f (t) ≥ 0 and
∫ t

max{t0,mink hk(t)}

m∑

j=1

a+
j (s)ds ≤ 1

e
, t ≥ t0,

for a certain t0 ≥ 0 and conditions (2.9.1) hold. Then the solution of the problem
(2.2.2), (2.2.3) is positive for t ≥ t0.

Proof As demonstrated in the proof of Theorem 2.7, the function u(t) =
e
∑m

k=1 ak(t) is a solution of inequality (2.9.2). Application of Theorem 2.22 com-
pletes the proof. �

2.10 Slowly Oscillating Solutions for Delay Differential
Equations

Definition 2.4 A solution x of (2.2.1) is said to be slowly oscillating if for every
t0 ≥ 0 there exist t1 > t0, t2 > t1 such that hk(t) ≥ t1 for t ≥ t2, x(t1) = x(t2) = 0,
x(t) > 0, t ∈ (t1, t2).

In particular, if hk(t) = t − τk , τk > 0 and for every t0 ≥ 0 there exist t1 > t0,
t2 > t1 such that x(t1) = x(t2) = 0, x(t) > 0, t ∈ (t1, t2), t2 − t1 ≥ maxk τk , then
x(t) is slowly oscillating.

Theorem 2.23 Let ak(t) ≥ 0. If there exists a slowly oscillating solution of (2.2.1)
(inequality (2.3.1)), then all solutions of this equation (inequality) are oscillatory.

Proof Denote by x a slowly oscillating solution of (2.2.1). Suppose that this equa-
tion has a nonoscillatory solution. Then, by Theorem 2.1, for a certain t0 ≥ 0 the
fundamental function satisfies X(t, s) > 0 if t ≥ s > t0.

There exist t1 > t0, t2 > t1 such that

hk(t) ≥ t1 for t ≥ t2, x(t1) = x(t2) = 0, x(t) > 0, t ∈ (t1, t2). (2.10.1)

Due to solution representation formula (2.2.5), for t ≥ t2, solution x(t) has the
form

x(t) = −
∫ t

t2

X(t, s)

m∑

k=1

ak(s)x
(
hk(s)

)
ds, (2.10.2)

where x(hk(s)) = 0 if hk(s) > t2. The inequality hk(t) ≥ t1 for t ≥ t2 yields that the
expression under the integral in (2.10.2) can differ from zero only if t1 < hk(s) < t2.
Therefore (2.10.1) yields that in (2.10.2) we have x(hk(s)) > 0. Consequently,
(2.10.2) implies x(t) ≤ 0 for each t ≥ t2. This contradicts the assumption that x

is an oscillatory solution. �

Corollary 2.16 Suppose ak(t) ≥ 0 and there exists a nonoscillatory solution of
(2.2.1). Then (2.2.1) has no slowly oscillating solutions.
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2.11 Stability and Nonoscillation

In this section, we present a corollary of Theorem 9.18 that will later be obtained
for systems of linear delay differential equations.

Theorem 2.24 Suppose that ak(t) ≥ 0,
∑m

k=1 ak(t) ≥ a0 > 0, t − hk(t) ≤ h0, k =
1, · · · ,m, and there exists an eventually positive solution of (2.2.1). Then (2.2.1) is
exponentially stable.

Corollary 2.17 Suppose that ak > 0, k = 1, · · · ,m, and there exists a positive solu-
tion λ of the equation

λ =
m∑

k=1

ake
λτk .

Then the autonomous equation

ẋ(t) +
m∑

k=1

akx(t − τk) = 0

is exponentially stable.

Corollary 2.18 Suppose that ak(t) ≥ 0,
∑m

k=1 ak(t) ≥ a0 > 0, t − hk(t) ≤ h0, k =
1, · · · ,m, and the conditions of anyone of Theorems 2.7, 2.8, 2.10, 2.11, 2.15 and
2.16 hold. Then (2.2.1) is exponentially stable.

Corollary 2.19 Suppose a(t) ≥ 0, b(t) ≥ 0, a(t) + b(t) ≥ a0 > 0, t − h(t) ≤ h0,
t − g(t) ≤ g0 and conditions of one of either Theorems 2.12 or 2.14 or Corollar-
ies 2.9 or 2.10 hold. Then (2.6.3) is exponentially stable.

In particular, all equations in Examples 2.1, 2.6 and 2.7 are exponentially stable.

2.12 Discussion and Open Problems

This chapter deals with some properties of a scalar delay differential equation that
are equivalent to nonoscillation. For most classes of autonomous functional dif-
ferential equations, nonoscillation is equivalent to existence of a real root of the
characteristic equation [192].

As was demonstrated in [192], for a nonautonomous scalar linear delay differen-
tial equation, nonoscillation is equivalent to existence of a nonnegative solution for
a certain nonlinear integral equation that was called “the generalized characteristic
equation”. In [80], for a neutral scalar differential equation, an integral nonlinear
inequality was constructed that has a nonnegative solution if and only if the funda-
mental function of this equation is positive.
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For a scalar differential equation with one delay, the equivalence of nonoscilla-
tion and the existence of a nonnegative solution of the same inequality as in [80] was
justified in [154, 232]. Unlike [154, 192, 232], it is assumed in this monograph that
coefficients of the equation, delays and the initial function are not necessarily con-
tinuous but Lebesgue measurable. Such weak constraints on equation parameters
are sufficient if a solution is an absolutely continuous function. Besides, a solution
is not assumed to be a continuous extension of the initial function, which is a natural
assumption for impulsive differential equations, considered further in Chaps. 12–14.

The main result of this chapter is Theorem 2.1, where it is demonstrated that
nonoscillation is equivalent to the three other properties of (2.2.1). Such theorems
are very popular for delay equations (see, for example, [192, Theorem 3.1.1]). How-
ever, in contrast to [192], we also show the equivalence of nonoscillation and posi-
tivity of the fundamental function. This property of the fundamental function is very
important in stability theory, boundary value problems, control theory and generally
in the qualitative theory of differential equations; we apply here positivity of the
fundamental function, in particular, to prove comparison theorems.

Comparison theorems appear to be an efficient tool in oscillation theory [154,
167, 192, 228, 289]. In paper [193], a rather general comparison result was pre-
sented for a nonlinear delay differential equation. In Sect. 2.3, a similar result is
obtained for a linear equation using a different technique based on the equivalence
of nonoscillation and positivity of the fundamental function. Here we follow the pa-
per [41], where some results of [193] were improved and extended to a more general
class of equations.

Explicit nonoscillation conditions were obtained in Sects. 2.4 and 2.5. Theo-
rems 2.8 and 2.10 outline the fact that for the equation

ẋ(t) + a(t)x
(
h(t)

) = 0, (2.12.1)

where a(t) ≥ 0, the condition

lim sup
t→∞

∫ t

h(t)

a(s)ds <
1

e
(2.12.2)

is not necessary for nonoscillation.
Some nonoscillation conditions of Sect. 2.5 were taken from the paper [41], while

Sect. 2.6 is based on [64].
Consider the equation

ẋ(t) + a(t)x(t − τ) = 0, (2.12.3)

where a(t) ≥ 0, τ ≥ 0 and a(t) is a continuous function.
For (2.12.3), the situation where

lim inf
t→∞

[
a(t) − 1

τe

]
= 0

is called the critical case (see, for example, [104]) because a small perturbation can
change oscillation properties of (2.12.3). In [104, 109], nonoscillation and oscilla-
tion results were obtained for (2.12.3) in the critical case.
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Theorem 2.25 [104] Let us assume that for some number k ∈ N and large t we
have a(t) ≤ ak(t), where

ak(t) := 1

eτ
+ τ

8et2
+ τ

8e(t ln t)2
+ τ

8e(t ln t ln2 t)2
+ · · ·

+ τ

8e(t ln t ln2 t · · · lnk t)2
,

lnk t = ln ln · · · ln t .
Then there exists a positive solution of (2.12.3) such that

x(t) < e−t/τ
√

t ln t ln2 t · · · lnk t .

If

a(t) > ak−2 + θτ

8e(t ln t ln2 t · · · lnk t)2

for some θ > 1, then all solutions of (2.12.3) are oscillatory.
In [109], the authors extend this result for (2.12.3) with continuous delay τ(t)

and obtain the following result.

Theorem 2.26 [109] Suppose in (2.12.3) that τ = τ(t) is a nonnegative continuous
function. If for large t

a(t) ≤ 1

τ(t)
exp

{
−

∫ t

t−τ(t)

ds

τ (s)

}
,

then (2.12.3) has a positive solution such that

x(t) < exp

{
−

∫ t

t0−τ(t0)

ds

τ (s)

}

for some t0 ≥ 0.

Some other nonoscillation and oscillation results in the critical case can be found
in the papers [35, 105, 144, 317, 324].

For the noncritical case, a summary of some other nonoscillation results is pre-
sented in the following theorem.

Theorem 2.27 Suppose at least one of the following conditions holds:

1. [302, 336] For sufficiently large T and for some λ > 0,

−λ + sup
t≥T

m∑

i=1

a+
i (t) exp

{
λ
(
t − hi(t)

)} ≤ 0.

2. [303] t − hi(t) = τi > 0, and there exist λ > 0 and a sufficiently large T such
that

−λ + sup
t≥T

max
j=1,···,m

n∑

k=1

pjk(t)e
λτk ≤ 0,

where pjk(t) = 1
τj

∫ t

t−τj
a+
k (s)ds.

Then there exists a nonoscillatory solution of (2.2.1).
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There are a lot of papers devoted to explicit oscillation conditions for (2.2.1).
A review of these results for equations with one delay is presented in the paper [320]
and for equations with several delays in [170]. In [323, 352], a connection between
oscillation properties of a linear differential equation with several constant delays
and an explicitly constructed linear second-order ordinary differential equation was
established.

In the following theorem, some explicit oscillation conditions for (2.2.1) with
several delays are outlined.

Theorem 2.28 Let ak(t) ≥ 0, k = 1, · · · ,m. All solutions of (2.2.1) are oscillatory
if any of the following conditions hold:

1. [18] Let hi(t) := t − τi , τi > 0,

lim inf
t→∞

∫ t+τi

t

ai(s)ds > 0,

and at least one of the following three inequalities holds:
a. p∗

ij := lim inft→∞
∫ t

t−τi
aj (s)ds > 1/e for some i, j ;

b. [∏n
i=1

∑n
j=1 p∗

ij ]1/n > 1/e;

c.
∑m

i=1 p∗
ij + 2

∑m
i<j (p

∗
ijp

∗
ji)

1/2 > m/2 for some j .
2. [208] Coefficients and delays satisfy ak(t) > 0, 0 < t − hk(t) < σ , k = 1, · · · ,m,

and

lim inf
t→∞

m∑

k=1

ak(t)
(
t − hk(t)

)
>

1

e
.

3. [180] There exist indices il ∈ {1, · · · ,m} such that

lim inf
t→∞

(
t − hil (t)

)
> 0, lim inf

t→∞

m∑

i=1

ail (t) > 0

and at least one of the following inequalities holds:

a.

lim inf
t→∞

[
inf
λ>0

{
1

λ

m∑

i=1

ai(t) exp
{
λ
(
t − hi(t)

)}
}]

> 1,

b.

lim inf
t→∞

{[
m∏

i=1

ai(t)

]1/m[
m∑

i=1

(
t − hi(t)

)
]}

>
1

e
.

4. [302] There exist a nonempty set I ⊂ {1, · · · ,m} and constants τ0, τ1, τ0 >

τ1 > 0, such that

t − hi(t) ≥ τ0, i ∈ I, lim inf
t→∞

∫ t+τ1

t

∑

t∈I

ai(s)ds > 0,



56 2 Scalar Delay Differential Equations on Semiaxes

lim sup
t→∞

{
max

k

∫ t

hk(t)

m∑

k=1

ak(s)ds

}
< ∞,

and at least one of the following inequalities holds:
a. For all λ > 0 and some T > 0,

−λ + inf
t≥T

∑m
k=1 ak(t) exp{λ ∫ t

hk(t)

∑m
i=1 ai(s)ds}

∑m
k=1 ak(t)

> 0.

b.

lim inf
t→∞

∑m
k=1 ak(t)

∫ t

hk(t)

∑m
i=1 ai(s)ds

∑m
k=1 ak(t)

>
1

e
.

5. [303] Let t − hi(t) = τi > 0, and at least one of the following conditions holds:
a. For every λ > 0 and sufficiently large T ,

−λ + inf
t≥T

min
j=1,···,m

m∑

k=1

pjk(t)e
λτk > 0,

where

pjk(t) = 1

τj

∫ t

t−τj

ak(s)ds.

b.

lim inf
t→∞ min

j=1,···,m

m∑

k=1

pjk(t) >
1

e
.

6. [153] There exist indices il ∈ {1, · · · ,m} such that

lim inf
t→∞

(
t − hil (t)

)
> 0, lim inf

t→∞

m∑

i=1

ail (t) > 0,

and at least one of the following inequalities holds:
a. For every λ > 0 and i = 1, · · · ,m,

lim inf
t→∞

1

λτi(t)

m∑

k=1

∫ t+τk(t)

t

ak(s)e
λτk(s)ds > 1.

b. For every i = 1, · · · ,m,

lim inf
t→∞

1

τi(t)

m∑

k=1

∫ t+τk(t)

t

ak(s)τk(s)ds >
1

e
.

Some other oscillation results were obtained in the papers [229, 257, 258, 290].
In Sect. 2.8, we obtain lower and upper estimates of the fundamental function for

a nonoscillatory equation. Applying these bounds, we can estimate a solution of the
initial value problem for such equations. Moreover, we obtain here an estimation of
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the integral of the fundamental function; such estimations are very useful in stability
theory. The results of this section were partially published in [62, 63].

In [193], several sufficient conditions on equation parameters and initial func-
tions were established that yield that the solution of the initial value problem is
positive. We supplement the results of [193] in Sect. 2.9. Namely, as is demon-
strated in Sect. 2.7, if the nonlinear integral inequality has a nonnegative solution,
then under certain conditions on the initial function (the same as in [193]) the so-
lution of the initial value problem is positive. We used here the results of paper
[41].

For ordinary linear differential equations of the second order, the following os-
cillation criterion is known: if the equation has an oscillatory solution, then all its
solutions oscillate. As is well known, for delay differential equations this is not true.
Y. Domshlak [140] revised the result above for differential equation (2.2.1) with
monotone delays. He demonstrated that if an associated equation has a slowly os-
cillating solution, then every solution of (2.2.1) is oscillating. In [78, 142, 144],
several new explicit sufficient conditions of oscillation were obtained by explicit
construction of such slowly oscillating solutions.

In particular, the following theorem was obtained in [78].

Theorem 2.29 [78] Let A + D > 0 and the system
⎧
⎪⎨

⎪⎩

(AD − BC)x1x2 − Ax1 − Dx2 + 1 = 0,

lnx1 − Ax1 − Bx2 < 0,

lnx2 − Cx1 − Dx2 < 0,

(2.12.4)

have a positive solution {x1, x2}, where A, B , C, D are defined by (2.6.4). Then all
solutions of (2.6.3) are oscillatory.

Application of Theorem 2.29 to (2.6.9) gives the sufficient condition aeb > 1
e

for oscillation of all solutions. Note that in Example 2.3 (by application of The-
orem 2.12) the inequality aeb < 1

e
implies nonoscillation of (2.6.9). Thus The-

orems 2.12 and 2.29 give sharp nonoscillation and oscillation conditions for the
equation with two delays and nonnegative coefficients.

Similarly, if μb < 1
e lnμ

, then (2.6.10) has a nonoscillatory solution; if aμb >
1

e lnμ
, then all solutions of (2.6.10) are oscillatory. If aα−b < 1

e ln(α−1)
, then (2.6.11)

has a nonoscillatory solution. If aα−b > 1
e ln(α−1)

, then all solutions of (2.6.10) are
oscillatory.

In Sect. 2.10, we present an oscillation criterion similar to Domshlak’s result,
where the existence of a slowly oscillating solution is assumed for (2.2.1) and not
for the associated equation; moreover, the delays are not necessarily monotone. We
prove the following result: if an equation has a nonoscillatory solution, then it has
no slowly oscillating solutions; this result was also first obtained in [41].

Some other nonoscillation results for scalar delay differential equations can be
found in the papers [66, 74, 106, 107, 152, 156, 284, 317, 352]. For example, in the
papers [317, 352], oscillation properties of first-order delay differential equations
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are compared with second-order ordinary differential equations. In particular, the
following theorems were obtained.

Theorem 2.30 [317] Assume that

t − τ(t) ≥ 1

e
, lim sup

t→∞

(
t − τ(t) − 1

e

)
ee(t−τ(t)) < a < 1,

and the second-order ordinary differential equation

ẍ(t) + 2

1 − a
e2+e(t−τ(t))

(
t − τ(t) − 1

e

)
x(t) = 0

has an eventually positive solution. Then the equation ẋ(t) + x(τ(t)) = 0 also has
an eventually positive solution.

Theorem 2.31 [352] Suppose pi ∈ C([t0,∞),R+), τi > 0. Then the equation

ẋ(t) +
m∑

i=1

pi(t)x(t − τi) = 0

has a nonoscillatory solution if and only if the equation

ẍ(t) + 2em∑m
i=1 τi

m∑

i=1

[
pi(t) − 1

emτi

]
x(t) = 0

has a nonoscillatory solution.

Finally, let us formulate some open problems and topics for research and discus-
sion.

1. Prove or disprove that inequality (2.12.2) implies nonoscillation of (2.12.1) with-
out the assumption that a(t) ≥ 0.

2. Find necessary and/or sufficient nonoscillation conditions for some partial cases
of (2.2.1): equations with periodic coefficients and delays t −hk(t) and equations
with delays of the form hk(t) = λkt

βk , t ≥ 1, 0 < λk < 1, 0 < βk ≤ 1.
3. Find lower and upper bounds of the fundamental function of nonoscillatory equa-

tion (2.2.1) without the assumption that ak(t) ≥ 0.
4. Is it possible to extend Theorems 2.22 and 2.23 to equations with oscillatory

coefficients?
5. Can Lemmas 2.2 and 2.3 be generalized to equations with positive and negative

coefficients?
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