Contents

Part I Basic Processes: Development, Physiology and Function

1 Cell Type-Specific Epigenetic Signatures Accompany Late Stages of Mouse Retina Development ... 3
 Evgenya Y. Popova, Colin J. Barnstable and Samuel Shao-Min Zhang

2 Programmed Cell Death During Retinal Development of the Mouse Eye .. 9
 Barbara M. Braunger, Cora Demmer and Ernst R. Tamm

3 Spatial and Temporal Localization of Caveolin-1 Protein in the Developing Retina ... 15
 Xiaowu Gu, Alaina Reagan, Allen Yen, Faizah Bhatti, Alex W. Cohen
 and Michael H. Elliott

4 Glutathione S-Transferase Pi Isoform (GSTP1) Expression in Murine Retina Increases with Developmental Maturity 23
 Wen-Hsiang Lee, Pratibha Joshi and Rong Wen

5 RETINA-Specific Expression of Kcnv2 Is Controlled by Cone-Rod Homeobox (Crx) and Neural Retina Leucine Zipper (Nrl) ... 31
 Alexander Aslanidis, Marcus Karlstetter, Yana Walczak, Herbert Jägle
 and Thomas Langmann

6 AIPL1 Protein and its Indispensable Role in Cone Photoreceptor Function and Survival .. 43
 Saravanan Kolandaivelu and Visvanathan Ramamurthy

7 Primate Short-Wavelength Cones Share Molecular Markers with Rods .. 49
 Cheryl M. Craft, Jing Huang, Daniel E. Possin and Anita Hendrickson
8 Exploration of Cone Cyclic Nucleotide-Gated Channel-Interacting Proteins Using Affinity Purification and Mass Spectrometry ... 57
Xi-Qin Ding, Alexander Matveev, Anil Singh, Naoka Komori and Hiroyuki Matsumoto

9 Electrophysiological Characterization of Rod and Cone Responses in the Baboon Nonhuman Primate Model 67
Michael W. Stuck, Shannon M. Conley, Ryan A. Shaw, Roman Wolf and Muna I. Naash

Part II Basic Processes: RPE

10 Animal Models, in “The Quest to Decipher RPE Phagocytosis” 77
Emeline F. Nandrot

11 In Vivo and in Vitro Monitoring of Phagosome Maturation in Retinal Pigment Epithelium Cells ... 85
Julian Esteve-Rudd, Vanda S. Lopes, Mei Jiang and David S. Williams

12 Lack of Effect of Microfilament or Microtubule Cytoskeleton-Disrupting Agents on Restriction of Externalized Phosphatidylserine to Rod Photoreceptor Outer Segment Tips ... 91
Linda Ruggiero and Silvia C. Finnemann

13 Vacuolar ATPases and Their Role in Vision 97
Lisa Shine, Claire Kilty, Jeffrey Gross and Breandan Kennedy

14 Rescue of Compromised Lysosomes Enhances Degradation of Photoreceptor Outer Segments and Reduces Lipofuscin-Like Autofluorescence in Retinal Pigmented Epithelial Cells 105
Sonia Guha, Ji Liu, Gabe Baltazar, Alan M. Laties and Claire H. Mitchell

15 The Role of Bestrophin-1 in Intracellular Ca^{2+} Signaling 113
Olaf Strauß, Claudia Müller, Nadine Reichhart, Ernst R. Tamm and Nestor Mas Gomez

Part III Basic Processes: Methodology

16 Application of Next-Generation Sequencing to Identify Genes and Mutations Causing Autosomal Dominant Retinitis Pigmentosa (adRP) ... 123
Stephen P. Daiger, Sara J. Bowne, Lori S. Sullivan, Susan H. Blanton, George M. Weinstock, Daniel C. Koboldt, Robert S. Fulton, David Larsen, Peter Humphries, Marian M. Humphries, Eric A. Pierce, Rui Chen and Yumei Li
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>Digital Quantification of Goldmann Visual Fields (GVFs) as a Means for Genotype–Phenotype Comparisons and Detection of Progression in Retinal Degenerations</td>
<td>131</td>
</tr>
<tr>
<td></td>
<td>Sarwar Zahid, Crandall Peeler, Naheed Khan, Joy Davis, Mahdi Mahmood, John R. Heckenlively and Thiran Jayasundera</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Simplified System to Investigate Alteration of Retinal Neurons in Diabetes</td>
<td>139</td>
</tr>
<tr>
<td></td>
<td>Shuqian Dong, Yan Liu, Meili Zhu, Xueliang Xu and Yun-Zheng Le</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>What Is the Nature of the RGC-5 Cell Line?</td>
<td>145</td>
</tr>
<tr>
<td></td>
<td>C. Sippl and E. R. Tamm</td>
<td></td>
</tr>
</tbody>
</table>

Part IV Genetics in Retinal Disease

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>Modeling Retinal Dystrophies Using Patient-Derived Induced Pluripotent Stem Cells</td>
<td>157</td>
</tr>
<tr>
<td></td>
<td>Karl J. Wahlin, Julien Maruotti and Donald J. Zack</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Mutation K42E in Dehydrodolichol Diphosphate Synthase (DHDDS) Causes Recessive Retinitis Pigmentosa</td>
<td>165</td>
</tr>
<tr>
<td></td>
<td>Byron L. Lam, Stephan L. Züchner, Julia Dallman, Rong Wen, Eduardo C. Alfonso, Jeffery M. Vance and Margaret A. Peričak-Vance</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>IROme, a New High-Throughput Molecular Tool for the Diagnosis of Inherited Retinal Dystrophies—A Price Comparison with Sanger Sequencing</td>
<td>171</td>
</tr>
<tr>
<td></td>
<td>Daniel F. Schorderet, Maude Bernasconi, Leila Tiab, Tatiana Favez and Pascal Escher</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Genetic Heterogeneity and Clinical Outcome in a Swedish Family with Retinal Degeneration Caused by Mutations in CRB1 and ABCA4 Genes</td>
<td>177</td>
</tr>
<tr>
<td></td>
<td>Frida Jonsson, Marie S. Burstedt, Ola Sandgren, Anna Norberg and Irina Golovleva</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>FAM161A, a Novel Centrosomal-Ciliary Protein Implicated in Autosomal Recessive Retinitis Pigmentosa</td>
<td>185</td>
</tr>
<tr>
<td></td>
<td>Frank Zach and Heidi Stöhr</td>
<td></td>
</tr>
</tbody>
</table>

Part V AMD: Novel Developments

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>Molecular Pathology of Macrophages and Interleukin-17 in Age-Related Macular Degeneration</td>
<td>193</td>
</tr>
<tr>
<td></td>
<td>Chi-Chao Chan and Daniel Ardeljan</td>
<td></td>
</tr>
<tr>
<td>Page</td>
<td>Title</td>
<td>Authors</td>
</tr>
<tr>
<td>------</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>26</td>
<td>The Role of Monocytes and Macrophages in Age-Related Macular Degeneration</td>
<td>Michelle Grunin, Shira Hagbi-Levi and Itay Chowers</td>
</tr>
<tr>
<td>27</td>
<td>Microglia in the Aging Retina</td>
<td>Marcus Karlstetter and Thomas Langmann</td>
</tr>
<tr>
<td>28</td>
<td>The Role of Complement Dysregulation in AMD Mouse Models</td>
<td>Jin-Dong Ding, Una Kelly, Marybeth Groelle, Joseph G. Christenbury, Wenlan Zhang and Catherine Bowes Rickman</td>
</tr>
<tr>
<td>29</td>
<td>Prolonged Src Kinase Activation, a Mechanism to Turn Transient, Sublytic Complement Activation into a Sustained Pathological Condition in Retinal Pigment Epithelium Cells</td>
<td>Bärbel Rohrer, Kannan Kunchithapautham, Andreas Genewsky and Olaf Strauß</td>
</tr>
<tr>
<td>30</td>
<td>Inflammation in Age-Related Macular Degeneration</td>
<td>Ema Ozaki, Matthew Campbell, Anna-Sophia Kiang, Marian Humphries, Sarah Doyle and Peter Humphries</td>
</tr>
<tr>
<td>31</td>
<td>Impairment of the Ubiquitin-Proteasome Pathway in RPE Alters the Expression of Inflammation Related Genes</td>
<td>Zhenzhen Liu, Tingyu Qin, Jilin Zhou, Allen Taylor, Janet R. Sparrow and Fu Shang</td>
</tr>
<tr>
<td>32</td>
<td>Inflammatory Biomarkers for AMD</td>
<td>Chloe M. Stanton and Alan F. Wright</td>
</tr>
<tr>
<td>33</td>
<td>Oxidized Low-Density-Lipoprotein-Induced Injury in Retinal Pigment Epithelium Alters Expression of the Membrane Complement Regulatory Factors CD46 and CD59 through Exosomal and Apoptotic Bleb Release</td>
<td>Katayoon B. Ebrahimi, Natalia Fijalkowski, Marisol Cano and James T. Handa</td>
</tr>
<tr>
<td>34</td>
<td>Should I Stay or Should I Go? Trafficking of Sub-Lytic MAC in the Retinal Pigment Epithelium</td>
<td>Aparna Lakkaraju, Kimberly A. Toops and Jin Xu</td>
</tr>
<tr>
<td>35</td>
<td>Hypoxia-Inducible Factor (HIF)/Vascular Endothelial Growth Factor (VEGF) Signaling in the Retina</td>
<td>Toshihide Kurihara, Peter D. Westenskow and Martin Friedlander</td>
</tr>
<tr>
<td>Chapter</td>
<td>Title</td>
<td>Authors</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>36</td>
<td>Is Age-Related Macular Degeneration a Microvascular Disease?</td>
<td>Robert F. Mullins, Aditi Khanna, Desi P. Schoo, Budd A. Tucker, Elliott H. Sohn, Arlene V. Drack and Edwin M. Stone</td>
</tr>
<tr>
<td>37</td>
<td>Genetic Risk Models in Age-Related Macular Degeneration</td>
<td>Felix Grassmann, Iris M. Heid and Bernhard H. F. Weber</td>
</tr>
<tr>
<td>38</td>
<td>A Mechanistic Review of Cigarette Smoke and Age-Related Macular Degeneration</td>
<td>Alex Woodell and Bärbel Rohrer</td>
</tr>
<tr>
<td>39</td>
<td>Measuring Cone Density in a Japanese Macaque (Macaca fuscata) Model of Age-Related Macular Degeneration with Commer</td>
<td>Mark E. Pennesi, Anupam K. Garg, Shu Feng, Keith V. Michaels, Travis B. Smith, Jonathan D. Fay, Alison R. Weiss, Laurie M. Renner, Sawan Hurst, Trevor J. McGill, Anda Cornea, Kay D. Rittenhouse, Marvin Sperling, Joachim Fruebis and Martha Neuringer</td>
</tr>
<tr>
<td>40</td>
<td>Nuclear Receptors as Potential Therapeutic Targets for Age-Related Macular Degeneration</td>
<td>Goldis Malek</td>
</tr>
<tr>
<td>41</td>
<td>Utilizing Stem Cell-Derived RPE Cells as A Therapeutic Intervention for Age-Related Macular Degeneration</td>
<td>Peter D. Westenskow, Toshihide Kurihara and Martin Friedlander</td>
</tr>
<tr>
<td>Part VI</td>
<td>Müller Cells, Microglia, and Macrophages</td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>Microglia-Müller Cell Interactions in the Retina</td>
<td>Minhua Wang and Wai T. Wong</td>
</tr>
<tr>
<td>44</td>
<td>Müller Cells and Microglia of the Mouse Eye React Throughout the Entire Retina in Response to the Procedure of an Intravitreal Injection</td>
<td>Roswitha Seitz and Ernst R. Tamm</td>
</tr>
<tr>
<td>45</td>
<td>Subretinal Infiltration of Monocyte Derived Cells and Complement Misregulation in Mice with AMD-Like Pathology</td>
<td>Joseph Fogerty and Joseph C. Besharse</td>
</tr>
</tbody>
</table>
46 **Ambiguous Role of Glucocorticoids on Survival of Retinal Neurons** ... 365
Tembei K. Forkwa, Ernst R. Tamm and Andreas Ohlmann

47 **Microglia-Müller Glia Crosstalk in the rd10 Mouse Model of Retinitis Pigmentosa** .. 373
Ana I. Arroba, Noemí Álvarez-Lindo, Nico van Rooijen and Enrique J. de la Rosa

48 **The Neuroprotective Potential of Retinal Müller Glial Cells** 381
Stefanie M. Hauck, Christine von Toerne and Marius Ueffing

49 **Leukemia Inhibitory Factor Signaling in Degenerating Retinas** 389
Cavit Agca and Christian Grimm

50 **In Vivo Function of the ER-Golgi Transport Protein LMAN1 in Photoreceptor Homeostasis** 395
Hong Hao, Janina Gregorski, Haohua Qian, Yichao Li, Chun Y Gao, Sana Idrees and Bin Zhang

51 **Investigating the Role of Retinal Müller Cells with Approaches in Genetics and Cell Biology** 401
Suhua Fu, Meili Zhu, John D. Ash, Yunchang Wang and Yun-Zheng Le

Part VII Degenerative Processes: Immune-Related Mechanisms, Genes and Factors

52 **An Overview of the Involvement of Interleukin-18 in Degenerative Retinopathies** .. 409
Matthew Campbell, Sarah L. Doyle, Ema Ozaki, Paul F. Kenna, Anna-Sophia Kiang, Marian M. Humphries and Peter Humphries

53 **Chronic Intraocular Inflammation and Development of Retinal Degenerative Disease** .. 417
Charles E. Egwuagu

54 **The Relevance of Chemokine Signalling in Modulating Inherited and Age-Related Retinal Degenerations** 427
Ulrich FO Luhmann, Scott J Robbie, James WB Bainbridge and Robin R Ali

55 **The Complement Regulatory Protein CD59: Insights into Attenuation of Choroidal Neovascularization** 435
Gloriane Schnabolk, Stephen Tomlinson and Bärbel Rohrer
56 Regeneration-Associated Genes on Optic Nerve Regeneration in Fish Retina ... 441
Kazuhiro Ogai, Maki Nishitani, Ayaka Kuwana, Kazuhiro Mawatari, Yoshiki Koriyama, Kayo Sugitani, Hiroshi Nakashima and Satoru Kato

57 Dominant Stargardt Macular Dystrophy (STGD3) and ELOVL4 .. 447
S. Logan and R. E. Anderson

58 Modulation of the Rate of Retinal Degeneration in T17M RHO Mice by Reprogramming the Unfolded Protein Response. 455
Shreyasi Choudhury, Sonali Nashine, Yogesh Bhootada, Mansi Motiwale Kunte, Oleg Gorbatyuk, Alfred S. Lewin and Marina Gorbatyuk

59 Expression of Poly(ADP-Ribose) Glycohydrolase in Wild-Type and PARG-110 Knock-Out Retina ... 463
Ayse Sahaboglu, Sylvia Bolz, Hubert Löwenheim and Francois Paquet-Durand

60 Current Therapeutic Strategies for P23H RHO-Linked RP 471
Anh T. H. Nguyen, Matthew Campbell, Anna-Sophia Kiang, Marian M. Humphries and Peter Humphries

61 Pathogenesis of X-linked RP3: Insights from Animal Models 477
Rakesh Kotapati Raghupathy, Daphne L McCulloch, Saeed Akhtar, Turki M Al-Mubrad and Xinhua Shu

62 Unc119 Gene Deletion Partially Rescues the GRK1 Transport Defect of Pde6d+/− Cones .. 487
Houbin Zhang, Jeanne M. Frederick and Wolfgang Baehr

63 Retinal Function in Aging Homozygous Cln3Δex7/8 Knock-In Mice .. 495
Cornelia Volz, Myriam Mirza, Thomas Langmann and Herbert Jägle

64 Synergistic Interaction of Tubby and Tubby-Like Protein 1 (Tulp1) .. 503
Nora Blanca Caberoy

65 Interaction of Tubby-Like Protein-1 (Tulp1) and Microtubule-Associated Protein (MAP) 1A and MAP1B in the Mouse Retina ... 511
Gregory H. Grossman, Craig D. Beight, Lindsey A. Ebke, Gayle J.T. Pauer and Stephanie A. Hagstrom

66 CEP290 and the Primary Cilium .. 519
Theodore G. Drivas and Jean Bennett
67 Usher Syndrome Protein Network Functions in the Retina and their Relation to Other Retinal Ciliopathies ... 527
 Nasrin Sorusch, Kirsten Wunderlich, Katharina Bauss, Kerstin Nagel-Wolfrum and Uwe Wolfrum

68 The Phenotype of the Good Effort Mutant Zebrafish is Retinal Degeneration by Cell Death and is Linked to the Chromosome Assembly Factor 1b Gene .. 535
 Travis J. Bailey and David R. Hyde

69 Knock-Down DHDDS Expression Induces Photoreceptor Degeneration in Zebrafish ... 543
 Rong Wen, Julia E. Dallman, Yiwen Li, Stephan L. Züchner, Jeffery M. Vance, Margaret A. Peričak-Vance and Byron L. Lam

70 Spectral Domain Optical Coherence Tomography Findings in CNGB3-Associated Achromatopsia and Therapeutic Implications ... 551
 Michael McClintock, Marc C. Peden and Christine N. Kay

71 Photoreceptor Pathology in the X-Linked Retinoschisis (XLRS) Mouse Results in Delayed Rod Maturation and Impaired Light Driven Transducin Translocation 559
 Lucia Ziccardi, Camasamudram Vijayasarathy, Ronald A. Bush and Paul A. Sieving

72 Mouse Models for Cone Degeneration .. 567
 Marijana Samardzija and Christian Grimm

73 How Long Does a Photoreceptor Cell Take to Die? Implications for the Causative Cell Death Mechanisms .. 575

Part VIII Degenerative Processes: RPE and Fatty Acids

74 Endoplasmic Reticulum Stress in Vertebrate Mutant Rhodopsin Models of Retinal Degeneration ... 585
 Heike Kroeger, Matthew M. LaVail and Jonathan H. Lin

75 Bisretinoid Degradation and the Ubiquitin-Proteasome System 593
 Janet R. Sparrow, Jilin Zhou, Shanti Kaligotla Ghosh and Zhao Liu
76 Analysis of Mouse RPE Sheet Morphology Gives Discriminatory Categories ... 601
Yi Jiang, X Qi, Micah A. Chrenek, Christopher Gardner, Nupur Dalal, Jeffrey H. Boatright, Hans E. Grossniklaus and John M. Nickerson

77 High Glucose Activates ChREBP-Mediated HIF-1α and VEGF Expression in Human RPE Cells Under Normoxia 609
Min-Lee Chang, Chung-Jung Chiu, Fu Shang and Allen Taylor

78 Sphingolipids in Ocular Inflammation .. 623
Annie Y. Chan, Shivani N. Mann, Hui Chen, Donald U. Stone, Daniel J. J. Carr and Nawajes A. Mandal

79 Biosynthesis of Very Long-Chain Polyunsaturated Fatty Acids in Hepatocytes Expressing ELOVL4 .. 631
Martin-Paul Agbaga, Sreemathi Logan, Richard S. Brush and Robert E. Anderson

80 Very Long Chain Polyunsaturated Fatty Acids and Rod Cell Structure and Function ... 637
L. D. Marchette, D. M Sherry, R. S Brush, M. Chan, Y. Wen, J. Wang, John D. Ash, R. E. Anderson and N. A. Mandal

Part IX Degenerative Processes: Immune-Related Mechanisms, Genes and Factors

81 Oxidative Stress Regulation by DJ-1 in the Retinal Pigment Epithelium ... 649
Vera L. Bonilha, Mary E. Rayborn, Xiaoping Yang, Chensong Xie and Huaibin Cai

82 The Role of Reactive Oxygen Species in Ocular Malignancy 655
Kathryn E. Klump and James F. McGinnis

83 The Effects of IRE1, ATF6, and PERK Signaling on adRP-Linked Rhodopsins .. 661
Wei-Chieh Jerry Chiang and Jonathan H. Lin

84 Role of Endothelial Cell and Pericyte Dysfunction in Diabetic Retinopathy: Review of Techniques in Rodent Models 669
Jonathan Chou, Stuart Rollins and Amani A Fawzi
85 Autophagy Induction Does Not Protect Retina Against Apoptosis in Ischemia/Reperfusion Model ... 677
Nathalie Produit-Zengaffinen, Constantin J. Pournaras and Daniel F. Schorderet

Part X Therapy: Gene Therapy

86 Advances in AAV Vector Development for Gene Therapy in the Retina ... 687
Timothy P. Day, Leah C. Byrne, David V. Schaffer and John G. Flannery

87 Cone Specific Promoter for Use in Gene Therapy of Retinal Degenerative Diseases ... 695
Frank M. Dyka, Sanford L. Boye, Renee C. Ryals, Vince A. Chiodo, Shannon E. Boye and William W. Hauswirth

88 Episomal Maintenance of S/MAR-Containing Non-Viral Vectors for RPE-Based Diseases ... 703
Adarsha Koirala, Shannon M Conley and Muna I. Naash

89 Gene Therapy in the Rd6 Mouse Model of Retinal Degeneration ... 711
Astra Dinculescu, Seok-Hong Min, Wen-Tao Deng, Qiuhong Li and William W. Hauswirth

90 Gene Therapy for Stargardt Disease Associated with ABCA4 Gene .. 719
Zongchao Han, Shannon M. Conley and Muna I. Naash

91 Assessment of Different Virus-Mediated Approaches for Retinal Gene Therapy of Usher 1B ... 725
Vanda S. Lopes, Tanja Diemer and David S. Williams

92 Gene Therapy Restores Vision and Delays Degeneration in the CNGB1−/− Mouse Model of Retinitis Pigmentosa 733
Stylianos Michalakis, Susanne Koch, Vithiyaanjali Sothilingam, Marina Garcia Garrido, Naoyuki Tanimoto, Elisabeth Schulze, Elvir Becirovic, Fred Koch, Christina Seide, Susanne C. Beck, Mathias W. Seeliger, Regine Mühlfriedel and Martin Biel

93 Therapy Strategies for Usher Syndrome Type 1C in the Retina 741
Kerstin Nagel-Wolfrum, Timor Baasov and Uwe Wolfrum
Part XI Therapy: Protection

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>95</td>
<td>Reciprocal Changes in Factor XIII and Retinal Transglutaminase Expressions in the Fish Retina During Optic Nerve Regeneration</td>
<td>Kayo Sugitani, Kazuhiro Ogai, Yoshiki Koriyama and Satoru Kato</td>
<td>759</td>
</tr>
<tr>
<td>96</td>
<td>N-Acetylserotonin: Circadian Activation of the BDNF Receptor and Neuroprotection in the Retina and Brain</td>
<td>P. Michael Iuvone, Jeffrey H. Boatright, Gianluca Tosini and Keqiang Ye</td>
<td>765</td>
</tr>
<tr>
<td>97</td>
<td>A High Content Screening Approach to Identify Molecules Neuroprotective for Photoreceptor Cells</td>
<td>John A. Fuller, Gillian C. Shaw, Delphine Bonnet-Wersinger, Baranda S. Hansen, Cynthia A. Berlinicke, James Inglese and Donald J. Zack</td>
<td>773</td>
</tr>
<tr>
<td>98</td>
<td>Antioxidant Therapy for Retinal Disease</td>
<td>Anna-Sophia Kiang, Marian M. Humphries, Matthew Campbell and Peter Humphries</td>
<td>783</td>
</tr>
<tr>
<td>99</td>
<td>Pathophysiological Mechanism and Treatment Strategies for Leber Congenital Amaurosis</td>
<td>Yingbin Fu and Tao Zhang</td>
<td>791</td>
</tr>
<tr>
<td>100</td>
<td>Current and Emerging Therapies for Ocular Neovascularisation</td>
<td>Alison L. Reynolds, David Kent and Breandán N. Kennedy</td>
<td>797</td>
</tr>
<tr>
<td>101</td>
<td>Targeting the PI3K/Akt/mTOR Pathway in Ocular Neovascularization</td>
<td>Temitope Sasore, Alison L. Reynolds and Breandán N. Kennedy</td>
<td>805</td>
</tr>
<tr>
<td>102</td>
<td>Pigment Epithelium-Derived Factor Protects Cone Photoreceptor-Derived 661W Cells from Light Damage Through Akt Activation</td>
<td>Matthew Rapp, Grace Woo, Muayyad R. Al-Ubaidi, S. Patricia Becerra and Preeti Subramanian</td>
<td>813</td>
</tr>
<tr>
<td>103</td>
<td>Nanoceria as Bona Fide Catalytic Antioxidants in Medicine: What We Know and What We Want to Know…</td>
<td>Lily L. Wong and James F. McGinnis</td>
<td>821</td>
</tr>
</tbody>
</table>
104 Nanoceria and Thioredoxin Regulate a Common Antioxidative Gene Network in tubby Mice ... 829
Xue Cai, Junji Yodoi, Sudipta Seal and James F. McGinnis

105 Intrascleral Transplantation of a Collagen Sheet with Cultured Brain-Derived Neurotrophic Factor Expressing Cells Partially Rescues the Retina from Damage due to Acute High Intraocular Pressure ... 837
Toshiaki Abe, Yumi Tokita-Ishikawa, Hideyuki Onami, Yuki Katsukura, Hirokazu Kaji, Matushiko Nishizawa and Nobuhiro Nagai

106 Neuroprotective Effects of Low Level Electrical Stimulation Therapy on Retinal Degeneration .. 845
Machelle T. Pardue, Vincent T. Ciavatta and John R. Hetling

Index .. 853
Retinal Degenerative Diseases
Mechanisms and Experimental Therapy
Ash, J.; Grimm, C.; Hollyfield, J.G.; Anderson, R.E.; LaVail, M.M.; Rickman, C.B. (Eds.)
2014, LXI, 862 p. 188 illus., 187 illus. in color., Hardcover
ISBN: 978-1-4614-3208-1