Contents

1 Introduction .. 1
1.1 Wireless Ad Hoc Sensor Networks 2
1.2 Contributions .. 4
1.3 Organization .. 5
References .. 6

2 Statistical Techniques and Location Discovery 9
2.1 Statistical Techniques ... 9
2.2 Location Discovery ... 10
2.2.1 Definition .. 11
2.2.2 Classification .. 11
2.2.3 Ranging Technology 12
2.2.4 Ranged-Based Location Discovery 14
2.2.5 Range-Free Location Discovery 17
2.2.6 Performance, Topology Control, Coverage and Connectivity .. 21
2.3 Location Discovery Computational Complexity 22
2.4 Measurements, Error Sources and Modeling 24
2.4.1 Error Sources ... 25
2.4.2 Theoretical Error Models 26
2.4.3 Real Data Error Models 28
2.5 Distance Measurements and Experimental Platform 34
2.5.1 ILP-Based Instance Generation/Selection 36
References .. 37

3 Location Discovery in Presence of Insufficient Number of Measurements .. 41
3.1 Motivation and Overview 42
3.2 Kernel Density Estimation-Based Offline Error Modeling .. 46
3.2.1 Model Construction ... 46
References .. 46
6 Techniques for Enabling Efficient Location Discovery

6.1 Motivation and Global Flow
6.1.1 Organization and Overview

6.2 Modeling
6.2.1 Distance Measurement Error Models
6.2.2 Location Error Models
6.2.3 Distance Calculation Error Model
6.2.4 Instrumented Environment Models
6.2.5 Mobility Models

6.3 Enabling Location Discovery
6.3.1 Atomic Multilateration
6.3.2 NLP Location Discovery
6.3.3 LD Partitioning and Iterative Fine-Tuning

6.4 Node Addition
6.4.1 Adding a Single Node
6.4.2 Adding Multiple Nodes Simultaneously

6.5 LD Infrastructure Engineering Change

6.6 Techniques for LD Physical Security
6.6.1 Trust Management and Data Authentication
 Using Constraint Manipulation
6.6.2 Privacy
6.6.3 LDI Security: Assignment and Scheduling

References

7 Localization Attacks and Countermeasures

7.1 Preliminaries
7.1.1 Localization Algorithm
7.1.2 Error Models
7.1.3 Attacker’s Objectives

7.2 Defense Algorithms for Atomic Multilateration
7.2.1 Defense Algorithm Organization
7.2.2 Defense Algorithm Objectives
7.2.3 Defense Algorithms Based on Linear Models
7.2.4 Perfect Attack Algorithm Results
7.2.5 Inefficiency of Outlier Detection Based on Linear Regression
7.2.6 Combined Minimum–Maximum Algorithm

7.3 Attack Algorithms for Atomic Multilateration
7.3.1 Structure of Attack Algorithm
7.3.2 Lowest Resistance Path Algorithm
7.3.3 Experimental Results

References
8 Future Research Directions ... 189

Author’s Biography .. 193

Index .. 195
Localization in Wireless Networks
Foundations and Applications
Sanford, J.F.; Potkonjak, M.; Slijepcevic, S.
2012, XVI, 200 p., Hardcover