The seamless exponential increase in computing power that scientists, engineers and computer users at large have enjoyed for decades has come to an end by the mid-2000s. Indeed, while until then, computer users could rely on computing power doubling every 18 months or so simply by means of increases in transistor integration levels and clock frequencies, with no major changes to software, physical limitations including voltage scaling and heat dissipation meant that this is no longer possible. Instead, the chip fabrication industry has turned to multicore chip technology to keep the “possibility” of doubling computer performance every 18 months alive. However, this is just a “potential” performance increase and not a seamless one as application software needs to be recoded to take full advantage of the performance potential of multicore technologies. Failing this, the computer industry would cease to become a growth industry as there would be no need for computer upgrades for performance sake. Instead, the industry would become a replacement industry where computers are only bought to replace faulty ones. This could have serious economic repercussions; hence the explosion of research activity in industry and academia in recent years aimed at bridging the semantic gap between applications, traditionally written in sequential code, and hardware, increasingly parallel in architecture.

The aforementioned semantic gap, however, is also opening a window of opportunity for niche parallel computer technologies such as field programmable gate array (FPGAs) and graphics processor units (GPUs) which have become more mainstream because the problem of parallel programming has to be tackled for general-purpose processors anyway. FPGAs in particular have the promise of custom-hardware performance and low power, with the software reprogrammability advantage of general purpose processors. This is precisely why this technology has attracted a great deal of attention within the high performance computing (HPC) community, giving rise to the new discipline of high performance reconfigurable computing (HPRC).

The aim of this book is to present a comprehensive view of the state of the art of HPRC to existing and aspiring researchers in the field. This book is split into three main parts: the first part deals with HPRC applications, the second with
architectures, and the third with HPRC tools. Each part consists of a number of contributions from eminent researchers in the field. Throughout the book, emphasis is made on opportunities, challenges, and possible future developments, especially in relation to other technologies such as general-purpose multicore processors and GPUs. Overall, we hope that this book will serve as both a reference and a starting point for existing and future researchers in the field of HPRC.

Finally, we thank all contributors, reviewers, and Springer’s staff for their efforts and perseverance in making this book project a reality.

Glasgow, UK Wim Vanderbauwhede
Edinburgh, UK Khaled Benkrid
High-Performance Computing Using FPGAs
Vanderbauwhede, W.; Benkrid, K. (Eds.)
2013, XI, 803 p. 232 illus., Hardcover