Contents

Prologue .. xvii

Part I Simple Single Species Models

1 Continuous Population Models ... 3
 1.1 Exponential Growth ... 3
 1.2 The Logistic Population Model .. 8
 1.3 The Logistic Equation in Epidemiology 13
 1.4 Qualitative Analysis ... 17
 1.5 Harvesting in Population Models 26
 1.5.1 Constant-Yield Harvesting 26
 1.5.2 Constant-Effort Harvesting 28
 1.6 Eutrophication of a Lake: A Case Study 31
 1.7 Appendix: Parameters in Biological Systems 38
 1.8 Project: The Spruce Budworm 42
 1.9 Project: Estimating the Population of the United States 45

2 Discrete Population Models ... 49
 2.1 Introduction: Linear Models .. 49
 2.2 Graphical Solution of Difference Equations 53
 2.3 Equilibrium Analysis ... 56
 2.4 Period-Doubling and Chaotic Behavior 61
 2.5 Discrete–Time Metered Models 67
 2.6 A Two-Age Group Model and Delayed Recruitment 70
 2.7 Systems of Two Difference Equations 76
 2.8 Oscillation in Flour Beetle Populations: A Case Study 80
 2.9 Project: A Discrete SIS Epidemic Model 86
 2.10 Project: A Discrete-Time Two-Sex Pair-Formation Model 88
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Continuous Single-Species Population Models with Delays</td>
<td>91</td>
</tr>
<tr>
<td>3.1</td>
<td>Introduction</td>
<td>91</td>
</tr>
<tr>
<td>3.2</td>
<td>Models with Delay in Per Capita Growth Rates</td>
<td>93</td>
</tr>
<tr>
<td>3.3</td>
<td>Delayed-Recruitment Models</td>
<td>98</td>
</tr>
<tr>
<td>3.4</td>
<td>Models with Distributed Delay</td>
<td>104</td>
</tr>
<tr>
<td>3.5</td>
<td>Harvesting in Delayed Recruitment Models</td>
<td>108</td>
</tr>
<tr>
<td>3.5.1</td>
<td>Constant-Effort Harvesting</td>
<td>108</td>
</tr>
<tr>
<td>3.5.2</td>
<td>Constant-Yield Harvesting</td>
<td>109</td>
</tr>
<tr>
<td>3.6</td>
<td>Nicholson’s Blowflies: A Case Study</td>
<td>112</td>
</tr>
<tr>
<td>3.7</td>
<td>Project: A Model for Blood Cell Populations</td>
<td>116</td>
</tr>
<tr>
<td>3.8</td>
<td>Project: Some Epidemic Models</td>
<td>119</td>
</tr>
<tr>
<td>3.9</td>
<td>Project: A Neuron Interaction Model</td>
<td>119</td>
</tr>
</tbody>
</table>

Part II Models for Interacting Species

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Introduction and Mathematical Preliminaries</td>
<td>123</td>
</tr>
<tr>
<td>4.1</td>
<td>The Lotka–Volterra Equations</td>
<td>123</td>
</tr>
<tr>
<td>4.2</td>
<td>The Chemostat</td>
<td>126</td>
</tr>
<tr>
<td>4.3</td>
<td>Equilibria and Linearization</td>
<td>128</td>
</tr>
<tr>
<td>4.4</td>
<td>Qualitative Behavior of Solutions of Linear Systems</td>
<td>135</td>
</tr>
<tr>
<td>4.5</td>
<td>Periodic Solutions and Limit Cycles</td>
<td>148</td>
</tr>
<tr>
<td>4.6</td>
<td>Appendix: Canonical Forms of 2×2 Matrices</td>
<td>156</td>
</tr>
<tr>
<td>4.7</td>
<td>Project: A Model for Giving Up Smoking</td>
<td>158</td>
</tr>
<tr>
<td>4.8</td>
<td>Project: A Model for Retraining of Workers by their Peers</td>
<td>159</td>
</tr>
<tr>
<td>4.9</td>
<td>Project: A Continuous Two-Sex Population Model</td>
<td>160</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Continuous Models for Two Interacting Populations</td>
<td>165</td>
</tr>
<tr>
<td>5.1</td>
<td>Species in Competition</td>
<td>165</td>
</tr>
<tr>
<td>5.2</td>
<td>Predator–Prey Systems</td>
<td>173</td>
</tr>
<tr>
<td>5.3</td>
<td>Laboratory Populations: Two Case Studies</td>
<td>185</td>
</tr>
<tr>
<td>5.4</td>
<td>Kolmogorov Models</td>
<td>190</td>
</tr>
<tr>
<td>5.5</td>
<td>Mutualism</td>
<td>191</td>
</tr>
<tr>
<td>5.6</td>
<td>The Spruce Budworm: A Case Study</td>
<td>199</td>
</tr>
<tr>
<td>5.7</td>
<td>The Community Matrix</td>
<td>206</td>
</tr>
<tr>
<td>5.8</td>
<td>The Nature of Interactions Between Species</td>
<td>209</td>
</tr>
<tr>
<td>5.9</td>
<td>Invading Species and Coexistence</td>
<td>212</td>
</tr>
<tr>
<td>5.10</td>
<td>Example: A Predator and Two Competing Prey</td>
<td>214</td>
</tr>
<tr>
<td>5.11</td>
<td>Example: Two Predators Competing for Prey</td>
<td>217</td>
</tr>
<tr>
<td>5.12</td>
<td>Project: A Simple Neuron Model</td>
<td>218</td>
</tr>
<tr>
<td>5.13</td>
<td>Project: A Plant–Herbivore Model</td>
<td>221</td>
</tr>
</tbody>
</table>
Contents

6 **Harvesting in Two-species Models** .. 223
 6.1 Harvesting of Species in Competition 223
 6.2 Harvesting of Predator–Prey Systems 229
 6.3 Intermittent Harvesting of Predator–Prey Systems 237
 6.4 Some Economic Aspects of Harvesting 242
 6.5 Optimization of Harvesting Returns 247
 6.6 Justification of the Optimization Result 251
 6.7 A Nonlinear Optimization Problem 254
 6.8 Economic Interpretation of the Maximum Principle 260
 6.9 Project: A Harvesting Model .. 263
 6.10 Project: Harvesting of Two Species 264

Part III **Structured Population Models**

7 **Models for Populations with Age Structure** 267
 7.1 Linear Discrete Models .. 267
 7.2 Linear Continuous Models ... 273
 7.3 The Method of Characteristics ... 275
 7.4 Nonlinear Continuous Models .. 281
 7.5 Models with Discrete Age Groups 288
 7.6 Project: Ordinary Differential Equations with Age Structure ... 290
 7.7 Project: Nonlinear Age Structured Population Growth 290
 7.8 Project: A Size Structured Population Model 291

8 **Models for Populations with Spatial Structure** 293
 8.1 Introduction .. 293
 8.2 Some Simple Examples of Metapopulation Models 294
 8.3 A General Metapopulation Model 297
 8.4 A Metapopulation Model with Residence and Travel 299
 8.5 The Diffusion Equation .. 301
 8.6 Solution by Separation of Variables 304
 8.7 Solutions in Unbounded Regions 314
 8.8 Linear Reaction–Diffusion Equations 321
 8.9 Nonlinear Reaction–Diffusion Equations 323
 8.9.1 Two-Species Interactions ... 326
 8.10 Diffusion in Two Dimensions .. 330
 8.11 Project: Cats and Birds in Space 332
 8.12 Project: The Cable Equation .. 333
 8.13 Project: Some Equations of Diffusion Type 335
Part IV Disease Transmission Models

9 Epidemic Models 345
 9.1 Introduction to Epidemic Models 345
 9.2 The Simple Kermack–McKendrick Epidemic Model 350
 9.3 A Branching-Process Disease-Outbreak Model 361
 9.3.1 Transmissibility 367
 9.4 Network and Compartmental Epidemic Models 369
 9.5 More Complicated Epidemic Models 373
 9.5.1 Exposed Periods ... 373
 9.5.2 Treatment Models ... 375
 9.5.3 An Influenza Model 376
 9.5.4 A Quarantine-Isolation Model 377
 9.6 An SIR Model with a General Infectious Period Distribution 382
 9.7 The Age of Infection Epidemic Model 384
 9.8 Models with Disease Deaths 388
 9.9 A Vaccination Model ... 391
 9.10 The Next Generation Matrix 393
 9.10.1 A Global Asymptotic Stability Result 403
 9.11 Directions for Generalization 404
 9.12 Some Warnings .. 404
 9.13 Project: Discrete Epidemic Models 405
 9.14 Project: Fitting Data for an Influenza Model 407
 9.15 Project: Social Interactions 407

10 Models for Endemic Diseases 411
 10.1 A Model for Diseases with No Immunity 411
 10.2 The SIR Model with Births and Deaths 414
 10.3 Some Applications .. 420
 10.3.1 Herd Immunity .. 420
 10.3.2 Age at Infection ... 421
 10.3.3 The Interepidemic Period 422
 10.3.4 “Epidemic” Approach to Endemic Equilibrium 424
 10.3.5 The SIS Model with Births and Deaths 425
 10.4 Temporary Immunity .. 427
 10.5 Diseases as Population Control 431
 10.6 Parameter Estimation: Ordinary Least Squares 434
 10.6.1 Connecting Models to Data 434
 10.6.2 Ordinary Least Squares (OLS) Estimation 436
 10.7 Possible Extensions ... 441
 10.8 Project: Pulse Vaccination 443
 10.9 Project: A Model with Competing Disease Strains 445
10.10 Project: An Epidemic Model in Two Patches 447
10.11 Project: Population Growth and Epidemics 448
10.12 Project: Estimating Parameters for Leishmaniasis 453
10.13 Project: Invasive Pneumococcal Disease Surveillance Data 457

Epilogue ... 465

References .. 483

Index .. 501
Mathematical Models in Population Biology and Epidemiology
Brauer, F.; Castillo-Chavez, C.
2012, XXIV, 508 p., Hardcover