Chapter 2
Ethnobotanical Aspects

Abstract The term “ethnobotany” was first coined in 1896 by the American botanist John Harshberger as the study of plants used by primitive and aboriginal people. Since then it has been defined as the traditional knowledge of indigenous communities about the surrounding plant diversity and the study of how the people of a particular culture and region make use of indigenous plants. Indigenous communities of the Lesser Himalayas are heavily dependent on plant resources as medicines, food, fuel, fodder, and tools in beekeeping. But at the same time, due to the overuse of these plant resources, certain species are threatened. Some common threats to the floral diversity of the region include forest fire, grazing and browsing, tree cutting, climatic fluctuation, earthquake, and flooding. In order to avoid further loss of endangered, endemic, and rare species, conservation methods should be practiced as part of a long-term conservation program. Reforestation trends have been lacking among the local communities; along with regeneration activities, an alternate source should be provided to reduce the pressure on flora.

Keywords Agriculture implements • Anthropogenic pressure • Beekeeping • Ethnobotany • Fodder • Food • Fuelwood • Marketing • Medicinal plants • Timber wood

2.1 Ethnobotany

The term “ethnobotany” was first coined in 1896 by the American botanist John Harshberger as the study of plants used by primitive and aboriginal people. Since then it has been defined as the traditional knowledge of indigenous communities of the surrounding plant diversity and the study of how the people of a particular culture and region make use of indigenous plants. Ethnobotany has its roots in botany. Botany, in turn, originated in part from an interest in finding plants to help fight illness. Ethnobotany is the most important approach to study the natural resource management of indigenous people. The issues of economic compensation and protected
areas raise the problem of the divergence between conservation managers and village communities in their perception, mode of presentation, and system of resource appropriation and allocation. Conservation managers’ recognition of the knowledge and practices of indigenous people would help reduce tension and conflict between these two parties [1]. Ethnobotany includes all types of relationships between people and plants. The definition of ethnobotany can be summed up in four words: people, plants, interactions, and uses.

“Ethnobotany is the study of how the people of a particular culture and region make use of indigenous plants,” while the ethnobotanist explores how plants are used as food, shelter, medicine, and clothing, for hunting, and in religious ceremonies. It is the science studying “the relationship between a given society and its environment and in particular the plant world” [2].

The Swede naturalist Carl Linnaeus actually invented ethnobotany as a student during his journey in 1732 to Lapland. On July 4, 1732, Linnaeus recorded in his diary some medical remedies used by the Sami people: “I here made the following observations relative to the remedies used by the Laplanders. Their Moxa, as the Japanese call it, but which they term Toule, is made of a fine fungus found on the birch. They apply a piece as large as a pea upon the afflicted part” [3]. He published the *Flora lapponica* in 1737, which included a discussion of the ways in which specific plants were utilized by the Laplander (Sami) people.

Harshberger’s definition and vision from 1896 still provide the core for the science of ethnobotany. A slight change in emphasis can be seen through a review of Cotton’s current definition: “Ethnobotany is considered to encompass all studies which concern the mutual relationship between plants and traditional peoples” [4]. The early definitions of ethnobotany restricted the field to the study of how aboriginal people used plants. Botanists, explorers, and other people who traveled the globe would see a plant and then identify, classify, and name it for the purposes of science. They would ask a local resident to give the name of the plant in the local language or to specify the local uses of the plant. This resulted in numerous monographs on the cultural group uses of plants. The particular focus of such monographs would vary depending upon the specific interest of the person undertaking the study. These early attempts of ethnobotany are considered the articulation of colonial economies, imaginations, and projects [5]. They can also be seen as the basic data-gathering stage of the ethnobotanical discipline. At present, ethnobotany has shifted its focus from people’s use of plants to the relationship between people and plants, which includes use, cognition, and ecology. Recent definitions of ethnobotany [4, 6–8] demonstrate a consensus on the move to include more than just use by focusing on the relationship between people and plants. However, there is not a consensus on whether the discipline should focus on all people or on traditional and indigenous peoples [4, 6]. It is evident that people who have lived in one locality for a long time have particularly rich sets of knowledge about and cognition of plants and local ecology. A more fundamental issue relative to knowledge, however, is found within the discussion of the relationship between knowledge as practice and knowledge as heritage.

Ethnobotany has its roots in botany, the study of plants. Botany, in turn, originated in part from an interest in finding plants to help fight illness. In fact, medicine
and botany have always had close ties. Many of today’s drugs have been derived from plant sources. However, as modern medicine and drug research advanced, chemically synthesized drugs replaced plants as the source of most medicinal agents in industrialized countries. Although research in plant sources has continued and plants are still used as the basis for drug development, the dominant interest and resulting research funding have shifted to the laboratory. To document the secret uses of the plants, ethnobotany has become an important part of our world. Recent ethnobotanical surveys among tribal populations have brought new information to the forefront, which can be utilized to improve the economy of the tribes by organizing the systematic collection of forest products and locating cottage industries, especially of herbal drugs. In China, ethnobotany was introduced as a science in the late 1970s, but deep-rooted ethnobotanical knowledge in Chinese culture can be traced back to ancient times in Chinese history. This is evidenced by the vast literature on Chinese Materia Medica and Chinese works of agriculture and horticulture [9]. In India and Pakistan, three traditional systems of medicine, namely, Ayurveda, Siddha, and Unani, are distinguished. Ethnomedicine is an area of research that deals with medicines derived from plants, animals, or minerals and used in the treatment of various diseases and ailments based on indigenous pharmacopoeia, folklore, and herbal charm. Ethnobotany has an important role in the conservation of nature, culture, and, in particular, the biological diversity and the diversity of traditional human cultures in the world. In fact, conservation and biodiversity are linked with each other. Traditional knowledge systems are hundreds or even thousands of years old and involve not only the knowledge of plants for medicine and food but also strategies for the sustainable utilization of plant resources. In these respects, ethnobotany has played a vital role in describing traditional knowledge about medicinal uses of plants and will continue to do so in the future. To discover the practical potential of native plants, an ethnobotanist must be knowledgeable in the study of plants themselves and must also understand and be sensitive to the dynamics of how cultures work. Ethnobotanists have helped us to understand the frightening implications the loss of the rain forests would bring, not only the consequent lost knowledge about tropical plants, but also the damage brought about by the loss of native cultures in their entirety, as well as the damage to the Earth’s ecological health. Out of necessity, ethnobotany is a multidisciplinary science. This multidisciplinary approach gives ethnobotanists more insight into the management of forest reserves in a period of tremendous environmental stress. Unfortunately, due to human factors that have influenced the ecological balance of these delicate ecosystems, we are presently faced with the possibility of losing our forests. Ethnobotany as an emerging science has a vital role in the improvement of plants and plant products. It certainly adds to conservation and can also be utilized for value addition.

The two fundamental strengths of applied ethnobotany are

To allow the knowledge, wisdom, and practices of local people to play fuller roles in identifying and finding solutions to issues of conservation and sustainable development.
Local people are fundamentally involved in all stages of research and practical follow-up, so there is a better chance of “buy-in” and more robust solutions [10].

2.2 Medicinal Uses

Local people mostly depend on medicinal plants because these plants are good sources of materials needed in primary health care. Local people use these medicinal plants in different situations:

1. People use medicinal plants for the treatment of various ailments on the basis of indigenous knowledge passed to them generation after generation.
2. They use medicinal plants on the advice of elders, such as wise men, herbalists, and traditional practitioners.

Medicinal plants are used in different ways and situations; for example:

1. People use them singly in their own preparations for the treatment of various ailments on the basis of indigenous knowledge passed to them generation after generation.
2. They are used on the advice of elders, wise men, and religious teachers.
3. They are used with the advice of nonqualified but professional traditional medicine workers (hakims), who have also gained some experience through apprenticeship with some registered practitioners.
4. They are prescribed by qualified registered practitioners (traditional herbalists) of the Unani system of medicine for a wide range of diseases and ailments.

In the study areas, people collect plants based on traditional knowledge rather than scientific knowledge. Most of them have insufficient knowledge about the proper time of collection, which is essential not only for the maximization of active ingredients, but also from the viewpoint of the sustainability of resources. After collection, the plants are dried in sunlight and in shade. Mostly flowers and leaves are dried in shade, while bark, fruits, roots, and seeds are dried in sunlight for 4–8 days. Old men and women do the drying by spreading the plants on a cloth or plastic sheets on the ground. Some plants are also used in fresh condition. Generally, the plant material is not stored. Today’s younger generation in the area is forgetting the indigenous knowledge of plants; with increasing labor costs and people’s search for better job opportunities, the plant collection is rapidly declining.

Among the plant parts, leaves, aerial parts, fruits, bark, flowers, rhizomes, roots, tubers, rinds, seeds, and bulbs are commonly used. All medications are classified into two types:

1. Single-plant-based
2. Based on more than one plant species
In the majority of cases, these medications were prepared by using water as a medium and administered along with milk, ghee, oil, egg, sulfur, and butter. The method of preparation falls into different categories, including plant parts used in crushed form, in powders, in pastes, fresh, in decoctions, in juices, in extracts, as latex, in infusions, and as resin.

2.3 Use of Plants as Food

Among the basic requirements of humans, food is the most important one. The population of any part of the world is dependent on the food production capacity of that region. *Triticum aestivum* (wheat) and *Zea mays* (corn), which are the most important crops of Pakistan, are also cultivated in the Lesser Himalayas area. The local inhabitants use the fruits of various plant species, including *Berberis lycium*, *Carissa opaca*, *Debregeasia saeneb*, *Diospyros lotus*, *Ficus spp.*, *Myrsine africana*, *Pistacia chinensis*, *Punica granatum*, *Rhus chinensis*, *Rubus ellipticus*, *Segeratia brandrethianana*, *Solanum spp.*, *Vitis lanata*, *Zanthoxylum armatum*, and *Zizyphus spp.* in both fresh and dried forms. Most of these fruits are also sold in the local market. Presently these species are under pressure due to population stress and deforestation.

Among vegetables, *Alysum desertorum*, *Amaranthus viridis*, *Bauhinia variegata*, *Brassica campestris*, *B. rapa*, *Chenopodium album*, *Cichorium intybus*, *Ficus spp.*, *Laminum amplexicaula*, *Lathyrus aphaca*, *Medicago polymorpha*, *Nasturtium officinale*, *Plantago lanceolata*, *Raphanus sativus*, *Rumex chalpensis*, *R. hastatus*, *Solanum spp.*, *Taraxacum officinale*, and *Torilis leptophyla* are commonly utilized species. *Allium cepa*, *A. sativum*, *Coriandrum sativum*, *Capsicum annuum*, *Mentha spp.*, *Oxalis corniculata*, and *Pimpinella diversifolia* are used as condiments and spices. The season for collection varies. *Allium cepa*, *A. sativum*, *Brassica campestris*, *B. rapa*, *Chenopodium album*, *Cichorium intybus*, *Ficus variegata*, *Nasturtium officinale*, *Raphanus sativus*, and *Taraxacum officinale* are collected in early spring, while *Amaranthus viridis*, *Capsicum annuum*, *Medicago polymorpha*, *Mentha spp.*, *Oxalis corniculata*, *Pimpinella diversifolia*, *Plantago lanceolata*, and *Rumex spp.* are collected in early winter. *Allium cepa*, *A. sativum*, *Amaranthus viridis*, *Brassica campestris*, *Coriandrum sativum*, *Ficus variegata*, *Mentha longifolia*, *Oxalis corniculata*, *Pimpinella diversifolia*, *Plantago major*, *Rumex spp.*, *Solanum spp.*, and *Taraxacum officinale* are also for medicinal purposes, used, for example, to treat asthma, body swelling, body weakness, cholera, cold fever, cough, diarrhea, dysentery, earache, vision weakness, gas trouble, gleet, indigestion, internal pain, internal worms, intestinal and liver inflammation, leucorrhoea, loose stools, menstrual disorders, mouth and gum problems, skin infections, and stomach disorders, to kill germs, and to stop bleeding. The above-mentioned species are not specifically cultivated for diseases. Some species such as *Allium sativum*, *A. cepa*, *Coriandrum sativum*, *Mentha spp.*, *Pimpinella diversifolia*, and *Zanthoxylum armatum* are dried in shade for 7–8 days and then stored. These species would be beneficial for the local people if they were cultivated on a large scale, as they provide food and treatment for diseases and could become a good source of income (Figs. 2.1 and 2.2).
2.4 Fuelwood Species

Wood is the oldest fuel known to man. Since time immemorial it has been meeting energy needs for domestic activities such as cooking and heating. Until the middle of the nineteenth century, wood was the sole or principal source of domestic and industrial energy worldwide. However, the use of wood as fuel has been steadily
replaced by cheaper, more efficient and more convenient sources of energy such as fossil fuels and electricity in developed countries. In developing countries, the process of replacing fuelwood is still in its initial stages, and wood continues to be the dominant fuel for domestic cooking and heating. According to FAO estimates, about 80% of wood removed all over the world is used as fuel in developing countries, and a large majority of rural people and urban poor depend upon it for providing domestic energy. Pakistan has a very small forest resource, as forests cover only about 4.8% of its total land area; only about half of these forests are productive, where timber and fuelwood can be harvested on a sustained basis. Although the foresters’ community was advocating for the development and extension of forestry in the country from the time Pakistan gained independence in 1947 to meet the growing needs of fuelwood and timber, nothing substantial was done in this regard until the late 1970s. Initial planning for the establishment of energy plantations on farming lands through farm/social forestry programs was done in the early 1980s. A number of projects were launched by the federal and provincial forest departments in the mid-1980s to promote tree growth on private lands to meet the public’s needs for fuelwood.

In the Lesser Himalayas, *Acacia modesta*, *A. catechu*, *Aesculus indica*, *Bauhinia variegata*, *Berberis lycium*, *Broussonetia papyrifera*, *Carissa opaca*, *Celtis caucasica*, *Cotinus coggyria*, *Dalbergia sissoo*, *Debergeasia saeneb*, *Diospyros lotus*, *Dodonaea viscosa*, *Ficus variegata*, *F. auriculata*, *Grewia optiva*, *Juglans regia*, *Justicia adhatoda*, *Mallotus philippensis*, *Melia azedarach*, *Morus spp.*, *Myrsine africana*, *Olea ferruginea*, *Pinus roxburghii*, *Pistacia chinensis*, *Populus alba*, *Prunus spp.*, *Punica granatum*, *Pyrus spp.*, *Quercus leucrichophora*, *Q. incana*, *Salix tetrasperma*, *Segertia brandrethina*, *Woodfordia fruticosa*, and *Zizyphus jujuba*, are used as fuelwood. Some herbs, such as *Cannabis sativa* and *Zea mays*, are also used for ignition when dry.

Fuelwood is collected by men, children, and, very rarely, women. About 90% of the people depend on plant species for fuelwood (Fig. 2.3), and 5% of residents use kerosene oil and gas cylinders. Residents depend on forest as well as cultivated trees for their fuelwood supply. Today people from the plain areas move to the upper mountains to collect wood, whereas 25–30 years ago, fuelwood was available at their doorstep. This shows the increased deforestation that has occurred in the area during the last 30 years. The main factors responsible for the deforestation include increasing population, fire, and excessive cutting of trees for construction. About 5% of local families make their living selling wood. The wood is collected from far-flung areas (4–5 km from the source of consumption) of the Reserved and Guzara areas in dry (dead) and wet (living) forms. The instruments used for cutting wood are saws (*aree*), axes (*kulahri*), and diggers (*kuddal*). Donkeys and camels are used to transport the wood. Some men even carry the fuelwood themselves. They gather the wood and tie the load with the help of elastic branches of *Mallotus philippensis*, *Cotinus coggygria*, *Myrsine africana*, *Morus nigra*, and *Dodonaea viscosa*. The method is called *sub*. The wood is used by the houses and small hotels in the area. Fuelwood is also stored; this storage is done in the rainy season (July–September).

Some species, including *Dodonaea viscosa*, *Mallotus philippensis*, *Myrsine africana*, *Olea ferruginea*, *Pinus roxburghii*, *Punica granatum*, and *Quercus leucrichophora* are under high pressure due to increased human population. It has been observed that more wood products are found at places that have been declared
sacred (shrines, graveyards, and rakhs). Locals pay great homage particularly to the shrines. These intentions of the people can be suggested to use for the protection of reserved areas if the areas near the shrines may be dedicated to the name of the respective saint or shrines by preaching through local religious people. As local inhabitants give more respects to such place and don’t exploit vegetation so it is suggested that we can protect vegetation of a place, if we dedicate that place to the name of respective saint or shrines.

2.5 Fodder Species

Forest grazing, a conventional resource, follows a centuries-old use of the forestland in Pakistan. Almost all types and legal categories of forests are burdened with unspecified grazing rights and privileges. The grazing pressure has been increasing with the increase in human and livestock populations. Consequently, uncontrolled heavy grazing is causing great damage to soil and vegetation due to compaction and trampling. This creates gaps in the forests and retrogression in certain localities. Summer grazing by both local and nomadic livestock is very common in the moist temperate forest ranges in the northern mountainous tract. These forests are mostly located between 200 and 300 m above sea level, where, due to favorable moisture and temperature conditions, luxurious ground vegetation, and perennial and annual grasses, heavy uncontrolled grazing causes considerable damage to both the forest and range vegetation [12].
2.5 Fodder Species

Fodder is the basic demand of cattle. Cattle’s fodder requirement is fulfilled in the area because it is rich in fodder species. Local people use trees, shrubs, and herbs as fodder for their livestock. Primarily the members of the family Poaceae are used as fodder in both fresh and dry forms throughout the year. However, *Brassica campestris* (Sarsoon), *Berberis lycium* (Sumbal), *Celtis caucasica* (Batkair), *Ficus* spp. (Phagwara), *Grewia optiva* (Dhaman), *Melia azedarach* (Drek), *Morus* spp., and *Punica granatum* (Drauna) are used as fodder in their respective seasons. Grazing is the usual practice for cows, goats, and buffalo. These domestic animals fulfill the dairy requirements of the local people as well as improve the local micro economy. Agricultural areas and “Rakhan” consist of those areas of Guzara forests that have abundant grasses, are harvested in September for the winter, and are regulated as the property of households not cut before September and protected from grazing. Rakhan areas form patches of Guzara forests that are the only source of fodder in winter.

Grasses are the most important fodder of the area and are found abundantly. Major grass species that are grazed by the animals and stored for winter are *Alopecurus myosuroides*, *Aristida cynantha*, *Avena sativa*, *Cynodon dactylon*, *Dichanthium annulatum*, *Heteropogon contortus*, *Phlaris minor*, and *Sorghum halepense*. Grasses are stored from August to October after the monsoon rainy season (Fig. 2.4). The stored grasses are used from November to January. From mid-January, when the stored fodder diminishes, the leaves of trees and shrubs, mainly *Grewia optiva* (Dhaman), *Celtis australis* (Batkair), *Quercus* spp., *Broussonetia papyrifera* (Gangli toot), *Ficus variegata* (Phagwari), *Myrsine africana* (Khukan), *Segeretia brandrethiana* (Ghangir), and *Olea ferruginea* (Kahu), are used, which play a vital role in maintaining the fodder supply during the off-season (November to February).
The grasses are cut with a sickle (dranti) and spread over the land for drying in handfuls called datha. After the dathas are dry, people make one gadi of 12 dathas and put it back on the land for further drying for 3–4 days. Then they make gada, which is a rectangular stack by putting six to eight gadis, one upon the other. Then, by stacking gadis one upon the other, they make a ghara (the complete stock), which has a rectangular shape. *Sorghum halepense* grass (Baru) is placed on it, so that rainwater cannot enter. Ropes (sub) of *Aristida funiculata* (Bhari) and *Dichanthium fovealatum* (Palwa) are used to tie the ghara. In the case of maize, people cut the maize and spread on land for 3–4 days. When it is dried, they tie the stocks in armfuls called poola and spread them on the land. With the help of wood, they make ghori, which consists of two Y-shaped pieces of wood created on the land with a straight piece of wood placed between them. They place the poola along this on both sides, along the length of the straight piece of wood. When the poola are dried, they make ghara. The fodder species are found in the area near houses; sometimes people have to go 2–3 km away from their houses. Mostly, male collect the fodder, but females also participate. Women usually conduct one trip per day during the collection period. They also conduct two to three trips in exceptional cases (marriage and festivals). According to area inhabitants, the density of grasses and other fodder species is decreasing due to the loss of soil fertility, increase in population, fire, overgrazing and browsing, and increased use of plants as fuelwood. Local people suggest that grazing is necessary for growth of the grasses as the feces of animals provides very good manure, preventing the soil from becoming nutrient-deficient.

Local people also use trees and shrubs as fodder for their livestock, including *Carissa opaca*, *Berberis lyceum*, *Broussonetia papyrifera*, *Diospyros lotus*, *Ficus variegata*, *Quercus leucoxiphora*, *Acacia* spp., *Morus* spp., *Melia azedarach*, *Olea ferruginea*, *Zizyphus jujuba*, *Myrsine africana*, *Pyrus* spp., *Prunus* spp., *Grewia optiva*, *Segeretia brandrethiana*, and *Celtis australis*. They cut branches with leaves with the help of sickles. The basic unit of collection is called a phant or dali. Thirty to 40 phants or dalis are tied together with the help of elastic branches of *Morus* spp., *Dodonaea viscosa*, *Myrsine africana*, *Grewia optiva*, *Vitex negundo*, *Olea ferruginea*, and *Cotinus coggyria* called sub. Then they use sub to tie the entire phants or dalis together to make a gada. The weight of this gada is about 25–35 kg. Among households interviewed, it was found that most of them could meet their winter fodder requirement. But those who could not meet it buy grass, maize, and wheat stalks from local villages. Livestock, especially buffalo, cows, and goats, totally depend upon the stored fodder and fodder species found during winter.

Grazing animals provide a very good natural material for the soil that ensures the regeneration of fodder species next year. However, locals may be told to avoid periodic grazing of specific areas, to give that area enough time for recovery. This can be achieved through rotational grazing; based on community self-management, it encourages keeping livestock of improved breeds and helps in the formation of livestock associations. *Olea ferruginea*, *Myrsine africana*, *Accacia* spp., *Quercus leuc-trichophora*, *Morus* spp., *Pyrus* spp., and *Grewia optiva* emerge as the most sustainable.
These species play a vital role in maintaining the fodder supply during the off-season of November to February. The wood, branches, bark, and fruit of these species are used as food, fuel, agricultural tools, rope, and thatching, among other uses.

2.6 Agricultural Implements

A proper tool handle is one of the basic requirements for the safety and high productivity of forest workers. Several forest tools have wooden and metallic parts. Substantial amount of work has been done throughout the world to design tool handles, which fulfill the agronomical and physical requirements of the job. In the case of wooden handles, the choice of the species depends upon its strength and other desirable characteristics. Beside strength and elasticity, other properties such as smoothness and the type of splintering that takes place during the failure of a handle are also important [14]. Inhabitants of the area use different plants species in making agricultural implements, ploughs, tools handles, sticks, sickle, dagger, hoe, axe and knife handles. They are made from locally available hard and soft wood. *Quercus leuctrichophora, Dalbergia sissoo, Morus spp, Diospyrus lotus, Acacia spp, Juglans regia, Melia azedarach and Olea ferruginea* are among the commonly utilized species. The most preferred wood is that of *Quercus leuctrichophora, Olea ferruginea, Morus alba, M. nigra, Melia azedarach, Psiticia integrrima, Salix tetrasperma, Populus alba, Diospyros lotus, Dalbergia sissoo and Acacia spp.* (Fig. 2.5).

![Wood for construction purpose](image-url)
2.7 Fencing and Hedges

Spiny and bushy species are used for fencing and hedges. These species are cultivated on the margins of fields and form a permanent fencing or branches of these plants are fixed in mud on the margin and form temporary fencing. *Carissa opaca, Berberis lycium, Acacia spp., Punica granatum, Zizyphus spp.*, and *Zanthoxylum armatum* are among the commonly utilized species for fencing and hedges.

2.8 Construction Material

In overall botanical importance to human existence, only food plants rank above wood and wood products. In early human history wood had been of greater importance than the food plants, as a fuel and for weapons and tools. There are over 4500 products that come wholly or in part from the wood of forest trees. Wood is used for housing, furniture, fuel, paper, charcoal and distillation by products, and synthetic materials such as rayon, cellophane and acetate plastics. One of the most obvious uses for trees is the production of building and furniture. Many millions of board feet of certain softwoods are used each year for home construction. Because of the grains, colors and durability of hardwoods, they are most often used in furniture making. Now a day is introduced in house construction like concrete roofs, iron doors and windows but plants still play very important in the construction of homes. The most preferred species used for the said purpose are *Acacia* spp, *Pinus roxburghii, Myrsine africana, Dodonaea viscosa, Dalbergia sissoo, Olea ferruginea, Morus alba, M. nigra, Celtis caucasica, Psiticia integrrima, Segeretia brandrethina and Quercus* spp. Leaves, branches and poles of these species are used, as most of the local houses have mud roofs. *Pinus* spp., *Morus spp. Quercus spp., Melia azadarach* and *Olea ferruginea* wood is also sold in the local markets as timber.

2.9 Miscellaneous Uses

Cotinus coggyria, Myrsine africana, Juglans regia, Pinus roxburghii, Acacia spp., Triticum aestivum, Grewia optiva, Celtis australis, Dodonaea viscosa, Phoenix sylvestris, Grewia optiva, Salix tetrasperma and *Berberis lyceum* are used miscellaneously. Women and children make ropes, bags, baskets, mats, ornamental goods and handicrafts from these plants which are used in daily life. The use of non-timber forest products like wild fruit and flowers for food, handicraft making, mats, dry decoration pieces from leaves, and rope making from bark should be encouraged and properly managed by the local social organizations for better use of resources for benefit of the local people and protection of ethnobotanical culture.
2.10 Grafting

Grafting is already being done quite successfully by local people in late winter (February–March) on Morus spp., Ficus spp., Pyrus spp., and Prunus spp. to get higher fruit production to improve their micro economy. There is also the possibility of grafting Olea europea (olive) on the native Olea ferruginea (wild olive) to make it a more profitable and sustainable species for the local people. In this regard, successful experimental trials were carried out at National Agriculture Research Centre (NARC) in Islamabad. But the results have yet to be applied in the Lesser Himalaya areas. Grafting different strains of Olea europea from different countries should be done to make it successful.

2.11 Beekeeping

Beekeeping is currently becoming a most beneficial industry (Fig. 2.6). The flora of the Lesser Himalayas has great potential for honey beekeeping. A number of wild species are normally visited by the bees, including Acacia modesta, Bauhinia variegata, Brassica campestris, Carissa opaca, Dalbergia sissoo, Justicia adhatoda, Punica granatum, Pyrus spp., Prunus spp., Zea mays. Beekeeping has been identified as a small-scale, nonland-based, off-farm activity that can facilitate the use of land resources without degrading them. Encouraging this industry in the area will stress to the local community the importance of keeping the flora alive as

Fig. 2.6 Apiculturing
Ethnobotanical Aspects well as being cautious about starting fires in the local forest, as fumigation badly disturbs beekeeping. Older people and women of the area can undertake this activity as a domestic industry. The association of wild animals with the is a natural phenomenon; for example, according to the older generation, there was a thriving population of barking deer when the vegetation of *Dodonaea viscosa*, *Myrsine africana*, *Mallatous Phillipensis*, and *Olea ferruginea* was dense, but due to habitat degradation, the barking deer population has also diminished. Several other animal species have become extinct, but they should be reintroduced to the area after rehabilitation.

2.12 Marketing of Medicinal Plants

The marketing of crude herbal drugs needs special attention due to their widespread use by traditional practitioners of the Greco-Arab system of medicine. Approximately 5,000 poor families residing in the remote hilly areas are engaged in the collection of medicinal plants during the summer months in the northern regions. Medicinal plants are transported to other markets by the seasonal traders, from where these commodities ultimately find their way to other parts of the country for consumption and export [15]. Medicinal plants are used not only by local practitioners as household remedy but also provide raw material for the pharmaceutical industries of the country. The business is in the hands of a few large trading houses in the areas that neither are organized nor work along scientific lines for the collection, drying, cleaning, washing, storage, and standardization of medicinal plants. The medicinal plants from the study areas are collected by local inhabitants, drug dealers, village grocers, and local practitioners through traditional knowledge and having no scientific background and approach (Fig. 2.7). They collect every possible available part of the plant. Most of the collectors are also ignorant of, or have insufficient knowledge about, the proper time of collection. Medicinal plants are either dried for further use or sold directly to the local grocers in fresh form, where the grocer does the drying him- or herself. Women generally do drying at home by spreading the plants on the floor, plastic sheets, cloth pieces, mats, and so forth, both in sunlight and in shade. The drying takes about 4.5 days. The quality of the drying process is generally very poor, as dust and foreign materials get mixed in with the plants. The fresh plant materials on the market are dried by being spread in sunlight for 4–6 days and then graded (pure, mixed), packed, and stored in bags ranging in volume from a few kilograms to mounds (1 mound = 40 Kg), depending upon the mass and availability of the drug. There is no storage process at the collector’s level, because they try to sell them as soon as possible. Village grocers have to store small quantities for a short while until they are able to sell them to wholesalers of the local markets in Rawalpindi, Abbottabad, Murree, and Haripur. Like drying, the storage is not done in hygienic conditions, and the crude drug often gets infected with insects and fungi. This results in the deterioration
312.12 Marketing of Medicinal Plants

of the dried crude drugs and ultimately causes financial loss to the traders. In order to maintain quality, storage facilities need a definite improvement.

Rawalpindi, Abbottabad, Murree, and Haripur are the important markets for crude drugs. They are easily available at cheap prices. The wholesalers sell the drugs to bigger markets such as Lahore and Karachi, from where it is exported. Among the commercially exploited drugs Viola canescens, Olea ferruginea, Pistacia chinensis, Zanthoxylum armatum, Acacia modesta, Brassica campestris, Mallotus phillipensis, Berberis lycium and Bergenia ciliata fetch high price, and the rates of Viola canescens, Berberis lycium, Acacia modesta, Bergenia ciliata, are going up due to the shortage of their availability. There is a great difference between the purchase and sale prices. Grocers, shopkeepers, and wholesalers explain that collectors bring fresh drug, which, upon drying, becomes lighter in weight; they also include the labor cost they pay. They also claim adulteration of other plant parts and extra material by collectors, which they have to remove, and the drug packed becomes lighter in weight, which in turn increases its price. The people in the study areas have not yet tried to cultivate or extensively grow these medicinal plants and later on sell them in markets or send them to pharmaceutical industries. Presently, there is no well-organized system for the cultivation of medicinal plants on farms. The cultivation of medicinal plants is generally not practiced in comparison to agricultural crops in the study areas. This might be due to local people’s unawareness regarding the medicinal uses, cultivation, seed collection, sowing, harvesting, collection, storage, and marketing value of medicinal plants. There are a lack of information regarding the marketing value of these medicinal plants and also a carelessness on the government’s part. The other reason for not cultivating these medicinal plants is the

Fig. 2.7 A local herbal dealer
lack of land. Most of the people in the study areas possess as little as 4 acres of land. Medicinal plants can provide better income to the local people than the traditional crops of the areas, if the market system for the medicinal plants is improved and cultivation of medicinal plants is done on scientific lines [13].

2.13 Anthropogenic Pressure

Due to overuse, medicinal plants are vulnerable and are considered rather threatened since their population is thinly scattered and cannot be commercially utilized on a large scale. The entire plant of Ajuga bracteosa, Berberis lyceum, Bergenia ciliata, Viola canescens, and Zanthoxylum armatum is used. Due to demand, the existence of these species will be threatened in the future. The only way to protect these plant species is to make the local communities aware of well-managed propagation and regeneration techniques. Although the fruit products of Punica granatum, Prunus spp. and Pyrus spp. are being sold on the local market, these species face pressures such as being cut down for fuel, furniture, and fodder purposes. Yet the species’ density in the areas is satisfactory and can be sustained if other pressures like being cut down for fuel and furniture are removed. The case is similar with Carissa opaca, Myrsine africana, and Mallotus philippensis. Berberis lycium, Bergenia ciliata, Justicia adhatoda, Pistacia chinensis, Quercus leuctrichophora, Punica granatum, and Viola canescens, are vulnerable due to their part(s) used, growth rate, quantity of consumption, and pressures like grazing, erosion, and fuel-wood collection. They in particular need to be conserved by domestication and regeneration techniques.

2.13.1 Fire

Fire is the most important factor that damages the vegetation over large areas. Fire not only destroys plant regeneration but also replaces trees with inferior scrub-type broad-leaved species such as Berberis lycium, Mallotus philippensis, Myrsine africana, and Rhus cotinus. In most of cases, the outbreak of fire is deliberate and is set by villagers in order to get the forest floor clear of pine needles to facilitate the movement of their cattle and to get a good growth of grasses, which come up abundantly after fire. People who have their own lands in forest areas or who live in forests are involved in fires. The fire normally continues for 5–6 days. Although Pinus spp. is a fire-hardy tree, great damage still occurs to the young crop as well as to mature trees by the presence of inflamed resin blazes. Repeated ground fires also cause soil to dry up and create drought conditions. In some cases, the trees are not apparently burned, but are subsequently killed by fire after-effects, such as desiccation and drought. The greatest damage is done to the young generation of Pinus spp., Dodonaea viscosa, Diospyros lotus, Myrsine africana, and so forth.
2.13 Anthropogenic Pressure

2.13.2 Browsing

Browsing by goats and sheep is another problem. The absence of regeneration in most of the areas, especially in brushwood forests, is solely due to this unwanted practice. The population of the area has free and unrestricted rights for the free grazing and browsing of domestic cattle. Large flocks of goats and sheep from the Kaghan Valley come down to these forests during winter in addition to already existing goats and sheep in the villages. The privately owned areas for browsing are limited, and more often illicit browsing is done in the forest areas (Fig. 2.8).

2.13.3 Grazing

Local domestic animals graze in the forest areas without any check, which results in the destruction of vegetation and also encourages the establishment of inferior species. Heavy grazing is harmful because it accelerates the washing down of rich top soil and thus renders conditions more unfavorable for natural regeneration (Fig. 2.9).
2.13.4 Grass Cutting

Grass cutting in the pine zone is beneficial if it is carried out carefully because it reduces fire hazards in addition to being used as fodder for the local cattle. But the grass cutters never take care of the young seedlings being cut down. The damage during grass cutting is much less in brushwood areas.

2.13.5 Lopping

Lopping of the *Quercus* spp., *Acacia modesta*, and *Olea ferruginea* species up to two thirds of the tree’s height is allowed under Guzara rules. But it is observed that local people do not follow these instructions, and they not only lop up to the top, but the poles of *Olea ferruginea*, *Quercus leucrichophora*, *Diospyros lotus*, and *Pinus* spp. have been seen to be cut in the middle and at the top, resulting in the trees’ death.

2.13.6 Torchwood

The local people have the pernicious habit of hacking out the resinous or torchwood *Delhi* from mature or nearly mature pine trees. During the search for proper wood, several trees are injured (Fig. 2.10) before suitable ones are found for subsequent extraction. These forest areas, which are generally in the neighborhood of inhabitants, suffer a great deal from this damage.

Fig. 2.9 Grazing pressure
2.13.7 **Climatic Factors**

Among climatic factors, the important ones are snowfall, wind, drought, and frost. Snowfall in the area is not heavy and does not damage vegetation. The areas are also not subjected to violent windstorms, but occasional damage from high winds may occur to solitary pine trees, which were left naked at the base for torchwood or severely damaged by fire. Ordinary frosts are not severe in winter, but *Dodonaea viscosa*, which is frost tender, does suffer to some extent from frost.

2.13.8 **Wild Animals and Insects**

The damage to vegetation caused by wild animals and insects, like beetles, porcupines, and wild pig, is not of significance in the area.

2.13.9 **Agriculture**

The people of the Lesser Himalayas are generally agriculturists. Due to the limited and small, uneconomical land holdings, they usually seek employment locally as well as in Islamabad, Abbottabad, Murree, Rawalpindi, Haripur, and Wah. In recent
years, the growing trend has been to seek employment in the Gulf States. Since the people of the area are agriculturists, in order to obtain more food grains for their increasing family size, they put more land under cultivation. Local people classify agricultural land into two basic units: (1) *kalsi* (contains 8 marlas (1 marla = 272 sq.ft.)) and (2) *Doga* (contains more than 8 marlas). For the cultivation of crops the plowing of land for the first time is called “khili patna”. People plow the land again the same day if the land is a small area; larger areas are plowed the next day. Then they plow the land a third time before spreading the seeds on the land. They call this plowing *rai karna*, which means “sowing seeds.” If the land is one *kanal* (1 kanal = 20 marlas (5440 sq. ft)), then plow the land from one side to the other is called *ang*. Three kilograms of maize seeds and 6–8 kg of wheat seeds are used for one *ang*. About 8–10 kg of maize and 10–15 kg of wheat seeds are used on one *kanal*. The plowing of land in hilly areas is mostly done with oxen in pairs. People who do not have oxen hire them for a day or more according to their needs. The cost of hiring oxen per day is 600–700 rupees (Rs). In the plain areas where the land is flatter, land is plowed with a tractor leased at 700 Rs/h. There is a lack of good, cultivable land. The people who live in the hilly areas usually have much land, but the productivity of this land is very low.

2.14 Recommendations

It is evident from the present investigation that the Lesser Himalayas is a rich area particularly with reference to medicinal plants. Its vegetation is valuable due to its natural resources. The natural resources must be looked after and managed. In order to conserve these resources, the local people must become actively involved in the evaluation, planning, implementation, and monitoring processes, as they are the best judges of the area.

The following recommendations are being proposed to conserve the plant species and to reap the greatest benefits from the available resources:

- The literacy rate must be increased; this will change people’s minds about current practices.
- Local organizations may involve local people as leaders of activities geared toward environmental conservation awareness. Local schoolteachers and religious leaders must be considered for such positions.
- In the present situation, the authorities should give attention to the sustainable use of resources.
- The locals should be educated about the importance of medicinal plants to their socioeconomic conditions and to the ecosystem.
- Small domestic industries such as beekeeping, gardening, handicrafts, and so on must be encouraged in the area through social organizations within the local communities.
- Forest rules must be overhauled by taking villagers into confidence, as misuse of the present rules has been reported.
• Botanical gardens of local medicinal plants should be made in the area where both the folk plants and their lore can be displayed for visitors.
• Research and postgraduate educational institutions should be involved to point out regeneration and propagation techniques for vulnerable medicinal species.
• The collection of medicinal plants carried out by locals may be streamlined in a way that provides ample regeneration time to the plant, keeping its optimum period of growth in mind. The area once used for collection may be declared a protected area, with extraction prohibited for a few years.
• The reforestation of fuelwood and fodder species must be encouraged, and alternate sources like gas cylinders, energy-efficient cookstoves, and tandoor ovens should be made available to local people.
• The reserved forests around religious shrines may be dedicated to the name of the respective shrine or saint.
• Improved livestock husbandry could significantly reduce grazing pressure in the area. Rotational grazing should be encouraged against periodic overgrazing among the local communities.
• Awareness and incentives for planting locally useful trees may be launched by schoolteachers, leaders of local mosques, and village elders.
• Further research should be done on the breeding biology, extent of natural range, threats, and population dynamic of endangered, rare, and endemic species of wild plants and animals.
• A regional conservation committee should be created for the area.
• Researchers and medicinal plant experts should visit the area during March to August for plant studies.
• In order to avoid further loss of endangered, endemic, and rare species, conservation methods should be practiced as part of a long-term conservation program.
• Reforestation trends have been lacking among the local communities. Along with regeneration activities, an alternate source should be provided to reduce pressure on fuelwood. For instance, for lower-income people, energy-efficient cookstoves, gas cylinders, and tandoors can be provided, leading to a 25–40% fuel saving.

References

Medicinal Plant Biodiversity of Lesser Himalayas-Pakistan
Abbasi, A.M.; Khan, M.A.; Ahmad, M.; Zafar, M.
2012, XIII, 220 p. 116 illus. in color., Hardcover