Contents

Preface vii
Acknowledgments ix

1. INTRODUCTION 1

1.1 Driver Assistance Systems 2
1.2 Active Stability Control Systems 2
1.3 Ride Quality 4
1.4 Technologies for Addressing Traffic Congestion 5

1.4.1 Automated highway systems 6
1.4.2 “Traffic-friendly” adaptive cruise control 6
1.4.3 Narrow tilt-controlled commuter vehicles 7
1.5 Emissions and Fuel Economy 9

1.5.1 Hybrid electric vehicles 10
1.5.2 Fuel cell vehicles 11

References 11
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.4 Consideration of Varying Longitudinal Velocity</td>
<td>60</td>
</tr>
<tr>
<td>3.5 Output Feedback</td>
<td>62</td>
</tr>
<tr>
<td>3.6 Unity Feedback Loop System</td>
<td>63</td>
</tr>
<tr>
<td>3.7 Loop Analysis with a Proportional Controller</td>
<td>65</td>
</tr>
<tr>
<td>3.8 Loop Analysis with a Lead Compensator</td>
<td>71</td>
</tr>
<tr>
<td>3.9 Simulation of Performance with Lead Compensator</td>
<td>75</td>
</tr>
<tr>
<td>3.10 Analysis of Closed-Loop Performance</td>
<td>76</td>
</tr>
<tr>
<td>3.10.1 Performance variation with vehicle speed</td>
<td>76</td>
</tr>
<tr>
<td>3.10.2 Performance variation with sensor location</td>
<td>78</td>
</tr>
<tr>
<td>3.11 Compensator Design with Look-Ahead Sensor Measurement</td>
<td>80</td>
</tr>
<tr>
<td>3.12 Chapter Summary</td>
<td>81</td>
</tr>
<tr>
<td>Nomenclature</td>
<td>82</td>
</tr>
<tr>
<td>References</td>
<td>84</td>
</tr>
<tr>
<td>4. LONGITUDINAL VEHICLE DYNAMICS</td>
<td>87</td>
</tr>
<tr>
<td>4.1 Longitudinal Vehicle Dynamics</td>
<td>87</td>
</tr>
<tr>
<td>4.1.1 Aerodynamic drag force</td>
<td>89</td>
</tr>
<tr>
<td>4.1.2 Longitudinal tire force</td>
<td>91</td>
</tr>
<tr>
<td>4.1.3 Why does longitudinal tire force depend on slip?</td>
<td>93</td>
</tr>
<tr>
<td>4.1.4 Rolling resistance</td>
<td>95</td>
</tr>
<tr>
<td>4.1.5 Calculation of normal tire forces</td>
<td>97</td>
</tr>
<tr>
<td>4.1.6 Calculation of effective tire radius</td>
<td>99</td>
</tr>
<tr>
<td>4.2 Driveline Dynamics</td>
<td>101</td>
</tr>
</tbody>
</table>
4.2.1 Torque converter

4.2.2 Transmission dynamics

4.2.3 Engine dynamics

4.2.4 Wheel dynamics

4.3 Chapter Summary

<table>
<thead>
<tr>
<th>Nomenclature</th>
<th>109</th>
</tr>
</thead>
<tbody>
<tr>
<td>References</td>
<td>111</td>
</tr>
</tbody>
</table>

5. INTRODUCTION TO LONGITUDINAL CONTROL

5.1 Introduction

5.1.1 Adaptive cruise control

5.1.2 Collision avoidance

5.1.3 Automated highway systems

5.2 Benefits of Longitudinal Automation

5.3 Cruise Control

5.4 Upper Level Controller for Cruise Control

5.5 Lower Level Controller for Cruise Control

5.5.1 Engine torque calculation for desired acceleration

5.5.2 Engine control

5.6 Anti-Lock Brake Systems

5.6.1 Motivation

5.6.2 ABS functions

5.6.3 Deceleration threshold based algorithms
Contents

5.6.4 Other logic based ABS control systems 134

5.6.5 Recent research publications on ABS 135

5.7 Chapter Summary 136

Nomenclature 136

References 137

6. ADAPTIVE CRUISE CONTROL 141

6.1 Introduction 141

6.2 Vehicle Following Specifications 143

6.3 Control Architecture 144

6.4 String Stability 146

6.5 Autonomous Control with Constant Spacing 147

6.6 Autonomous Control with the Constant Time-Gap Policy 150

 6.6.1 String stability of the CTG spacing policy 151

 6.6.2 Typical delay values 153

6.7 Transitional Trajectories 156

 6.7.1 The need for a transitional controller 156

 6.7.2 Transitional controller design through $R - \dot{R}$ diagrams 158

6.8 Lower Level Controller 164

6.9 Chapter Summary 165

Nomenclature 166

References 167

Appendix 6.A 168
Contents

7. LONGITUDINAL CONTROL FOR VEHICLE PLATOONS 171

7.1 Automated Highway Systems 171

7.2 Vehicle Control on Automated Highway Systems 172

7.3 Longitudinal Control Architecture 173

7.4 Vehicle Following Specifications 175

7.5 Background on Norms of Signals and Systems 176

7.5.1 Norms of signals 176

7.5.2 System norms 177

7.5.3 Use of induced norms to study signal amplification 178

7.6 Design Approach for Ensuring String Stability 181

7.7 Constant Spacing with Autonomous Control 182

7.8 Constant Spacing with Wireless Communication 185

7.9 Experimental Results 188

7.10 Lower Level Controller 190

7.11 Adaptive Controller for Unknown Vehicle Parameters 191

7.11.1 Redefined notation 191

7.11.2 Adaptive controller 192

7.12 Chapter Summary 195

Nomenclature 196

References 197

Appendix 7.A 199
Contents

8. ELECTRONIC STABILITY CONTROL 201

8.1 Introduction 201

8.1.1 The functioning of a stability control system 201

8.1.2 Systems developed by automotive manufacturers 203

8.1.3 Types of stability control systems 203

8.2 Differential Braking Systems 204

8.2.1 Vehicle model 204

8.2.2 Control architecture 208

8.2.3 Desired yaw rate 209

8.2.4 Desired side-slip angle 210

8.2.5 Upper bounded values of target yaw rate and slip angle 211

8.2.6 Upper controller design 213

8.2.7 Lower Controller design 217

8.3 Steer-By-Wire Systems 218

8.3.1 Introduction 218

8.3.2 Choice of output for decoupling 219

8.3.3 Controller design 222

8.4 Independent All Wheel Drive Torque Distribution 224

8.4.1 Traditional four wheel drive systems 224

8.4.2 Torque transfer between left and right wheels using a differential 225

8.4.3 Active control of torque transfer to all wheels 226
8.5 Need for Slip Angle Control 228
8.6 Chapter Summary 235

Nomeclature 235
References 239

9. MEAN VALUE MODELING OF SI AND DIESEL ENGINES 241

9.1 SI Engine Model Using Parametric Equations 242

9.1.1 Engine rotational dynamics 243
9.1.2 Indicated combustion torque 243
9.1.3 Friction and pumping losses 244
9.1.4 Manifold pressure equation 245
9.1.5 Outflow rate \(\dot{m}_{\text{in}} \) from intake manifold 246
9.1.6 Inflow rate \(\dot{m}_{\text{in}} \) into intake manifold 246

9.2 SI Engine Model Using Look-Up Maps 248

9.2.1 Introduction to engine maps 248
9.2.2 Second order engine model using engine maps 252
9.2.3 First order engine model using engine maps 253

9.3 Introduction to Turbocharged Diesel Engines 255

9.4 Mean Value Modeling of Turbocharged Diesel Engines 256

9.4.1 Intake manifold dynamics 257
9.4.2 Exhaust manifold dynamics 257
9.4.3 Turbocharger dynamics 257
9.4.4 Engine crankshaft dynamics 258
Contents

9.4.5 Control system objectives 259

9.5 Lower Level Controller with SI Engines 260

9.6 Chapter Summary 262

Nomenclature 262

References 264

10. DESIGN AND ANALYSIS OF PASSIVE AUTOMOTIVE SUSPENSIONS 267

10.1 Introduction to Automotive Suspensions 267

10.1.1 Full, half and quarter car suspension models 267

10.1.2 Suspension functions 270

10.1.3 Dependent and independent suspensions 271

10.2 Modal Decoupling 273

10.3 Performance Variables for a Quarter Car Suspension 274

10.4 Natural Frequencies and Mode Shapes for the Quarter Car 276

10.5 Approximate Transfer Functions Using Decoupling 278

10.6 Analysis of Vibrations in the Sprung Mass Mode 283

10.7 Analysis of Vibrations in the Unsprung Mass Mode 285

10.8 Verification Using the Complete Quarter Car Model 286

10.8.1 Verification of the influence of suspension stiffness 286

10.8.2 Verification of the influence of suspension damping 288

10.8.3 Verification of the influence of tire stiffness 290

10.9 Half-Car and Full-Car Suspension Models 292
11. ACTIVE AUTOMOTIVE SUSPENSIONS 301

11.1 Introduction 301

11.2 Active Control: Trade-Offs and Limitations 304

11.2.1 Transfer functions of interest 304

11.2.2 Use of the LQR Formulation and its relation to H_2-Optimal Control 304

11.2.3 LQR formulation for active suspension design 306

11.2.4 Performance studies of the LQR controller 307

11.3 Active System Asymptotes 313

11.4 Invariant Points and Their Influence on the Suspension Problem 315

11.5 Analysis of Trade-Offs Using Invariant Points 317

11.5.1 Ride quality/road holding trade-offs 317

11.5.2 Ride quality/rattle space trade-offs 319

11.6 Conclusions on Achievable Active System Performance 320

11.7 Performance of a Simple Velocity Feedback Controller 321

11.8 Hydraulic Actuators for Active Suspensions 323

11.9 Chapter Summary 325

Nomenclature 326

References 327
Contents

12. SEMI-ACTIVE SUSPENSIONS 329

12.1 Introduction 329

12.2 Semi-Active Suspension Model 331

12.3 Theoretical Results: Optimal Semi-Active Suspensions 333

12.3.1 Problem formulation 333

12.3.2 Problem definition 335

12.3.3 Optimal solution with no constraints on damping 336

12.3.4 Optimal solution in the presence of constraints 339

12.4 Interpretation of the Optimal Semi-Active Control Law 340

12.5 Simulation Results 342

12.6 Calculation of Transfer Function Plots with Semi-Active Systems 345

12.7 Performance of Semi-Active Systems 347

12.7.1 Moderately weighted ride quality 347

12.7.2 Sky hook damping 349

12.8 Chapter Summary 352

Nomenclature 352

References 353

13. LATERAL AND LONGITUDINAL TIRE FORCES 355

13.1 Tire Forces 355

13.2 Tire Structure 357

13.3 Longitudinal Tire Force at Small Slip Ratios 359
Contents

13.4 Lateral Tire Force at Small Slip Angles 362
13.5 Introduction to the Magic Formula Tire Model 365
13.6 Development of Lateral Tire Model for Uniform Normal Force Distribution 367
 13.6.1 Lateral forces at small slip angles 368
 13.6.2 Lateral forces at large slip angles 371
13.7 Development of Lateral Tire Model for Parabolic Normal Pressure Distribution 375
13.8 Combined Lateral and Longitudinal Tire Force Generation 381
13.9 The Magic Formula Tire Model 385
13.10 Dugoff’s Tire Model 389
 13.10.1 Introduction 389
 13.10.2 Model equations 390
 13.10.3 Friction circle interpretation of Dugoff’s model 390
13.11 Dynamic Tire Model 392
13.12 Chapter Summary 393
Nomenclature 393
References 395

14. TIRE-ROAD FRICTION MEASUREMENT ON HIGHWAY VEHICLES 397
14.1 Introduction 397
 14.1.1 Definition of tire-road friction coefficient 397
 14.1.2 Benefits of tire-road friction estimation 398
14.2 Longitudinal Vehicle Dynamics and Tire Model for Friction Estimation

14.2.1 Vehicle longitudinal dynamics

14.2.2 Determination of the normal force

14.2.3 Tire model

14.2.4 Friction coefficient estimation for both traction and braking

14.3 Summary of Longitudinal Friction identification Approach

14.4 Identification Algorithm Design

14.4.1 Recursive least-squares (RLS) identification

14.4.2 RLS with gain switching

14.4.3 Conditions for parameter updates

14.5 Estimation of Accelerometer Bias

14.6 Experimental Results

14.6.1 System hardware and software

14.6.2 Tests on dry concrete road surface

14.6.3 Tests on concrete surface with loose snow covering

14.6.4 Tests on surface consisting of two different friction levels

14.6.5 Hard braking test
14.7 Chapter Summary 422

Nomenclature 423

References 424

15. ROLL DYNAMICS AND ROLLOVER PREVENTION 427

15.1 Rollover Resistance Rating for Vehicles 427

15.2 One Degree of Freedom Roll Dynamics Model 433

15.3 Four Degrees of Freedom Roll Dynamics Model 440

15.4 Rollover Index 444

15.5 Rollover Prevention 448

15.6 Chapter Summary 453

Nomenclature 453

References 455

16. DYNAMICS AND CONTROL OF HYBRID GAS ELECTRIC VEHICLES 457

16.1 Types of Hybrid Powertrains 458

16.2 Powertrain Dynamic Model 461

16.2.1 Dynamic Model for Simulation of a Parallel Gas-Electric Hybrid Vehicle 461

16.2.2 Dynamic Model for Simulation of a Power-Split Hybrid Vehicle 464

16.3 Background on Control Design Techniques for Energy Management 469

16.3.1 Dynamic Programming Overview 469

16.3.2 Model Predictive Control Overview 473
Contents

- 16.3.3 Equivalent Consumption Minimization Strategy 478
- 16.4 Driving Cycles 480
- 16.5 Performance Index, Constraints and System Model Details for Control Design 482
- 16.6 Illustration of Control System Design for a Parallel Hybrid Vehicle 486
- 16.7 Chapter Summary 488

Nomenclature 488

References 490

Index 493
Vehicle Dynamics and Control
Rajamani, R.
2012, XXVI, 498 p., Hardcover