Contents

1 Introduction .. 1
 1.1 Antenna Arrays in the Automotive Industry: Applications
 and Frequency Ranges 1
 1.1.1 Intelligent Transportation Systems 2
 1.1.2 Space Diversity System for FM, Digital Terrestrial TV,
 and RKE/TPMS Devices 10
 1.1.3 Direct Broadcasting Satellite TV 11
 1.2 Antenna Arrays: From Simple Configuration to
 Advanced Design 13
 1.2.1 Fixed Beam Directional Arrays 13
 1.2.2 Arrays with Simple (ON/OFF) Electronically
 Switchable Elements 14
 1.2.3 Electronically Controlled Phased Antenna Arrays
 with Single Output Receiver 15
 1.2.4 Adaptive Antenna Arrays 17
 References .. 18

Part I Performances and Processing Methods

2 Typical Array Geometries and Basic Beam Steering Methods 23
 2.1 Introduction 23
 2.2 Linear Array Factor for Equally Spaced Elements 24
 2.3 Planar Array Factor 29
 2.4 Array Factor for Circular Configuration 31
 2.5 Array Factor for Electronically Controlled Phased Arrays 32
 2.5.1 Design with Analog Phase Shifters 32
 2.5.2 System with Digital Phase Shifters 33
 2.5.3 Pin Diode Digital Phase Shifter Topology 39
3 Smart Beamforming: Main Adaptive Techniques

3.1 Adaptive Systems
 3.1.1 Introduction
 3.1.2 Maximum Signal-to-Noise Ratio: Applebaum Loop
 3.1.3 Least Mean Square Algorithm
 3.1.4 Adaptation Based on Phase Variations

3.2 Systems with Multi-Antenna Elements at the Transmitter and Receiver Ends
 3.2.1 SISO, MISO, SIMO, and MIMO Design: Brief Introduction
 3.2.2 SISO System and Communication Channel
 3.2.3 MIMO System Capacity
 3.2.4 Correlation Effect and MIMO Capacity Value
 3.2.5 Mutual Coupling and MIMO Capacity
 3.2.6 SIMO Diversity Techniques

3.3 High Resolution Processing Algorithms for Direction Finding (DF) Applications

References
Part II Practical Design for Automotive

5 Base Station Array Examples for Communication with Vehicles 117
 5.1 Fixed Beam Directional Arrays ... 117
 5.1.1 Linear Polarized Toll Collection Design for 915 MHz ... 117
 5.1.2 Circular Polarized 16-Element Microstrip Array
 for Toll Collection Application ... 120
 5.1.3 Microstrip Array with Omnidirectional Radiation
 Pattern in Horizontal Plane for 2.45 GHz 121
 5.1.4 Printed Dipole Array with Reflector Plane
 for 2.45 GHz Band ... 122
 5.2 Antenna Arrays with Electronically Controlled Beam 124
 5.2.1 System with ON/OFF Parasitic Microstrip Structure ... 124
 5.2.2 Array for Horizontal Over 360° Beam Steering
 with Switchable Printed Landstorfer/Yagi 125
 5.2.3 Example of Practical Array with Simple 4 × 4
 Butler Matrix ... 127
 5.2.4 Circular Array with Electronically Controllable
 Dipole Elements ... 129
 5.2.5 Single RF Channel Digital SMILE Array 130
 5.3 Parking Lot Vehicle Localization Antenna Systems 131
 5.3.1 Communication Scenarios .. 132
 5.3.2 Single Channel Eight Element Circular Array
 for 2.4 GHz Applications ... 133
 5.3.3 Example of Conformal Smart 2.45 GHz Array
 for Lighting Pole Installation at the Parking Area 134
 References ... 137

6 Compact Car-Mounted Arrays ... 139
 6.1 Design Examples for 2.45 GHz .. 139
 6.1.1 Reactively Steered Ring Array Printed on Car Glass ... 139
 6.1.2 Steerable Disk Patch Configuration 141
 6.1.3 Low Profile Vertically Polarized F-Antenna Array
 for Roof Mount Applications .. 142
 6.2 Prototype Samples for 5.2 and 5.9 GHz Frequency Bands 145
 6.2.1 Endfire Array for ITS Applications Providing
 Forward/Backward Radiation .. 145
 6.2.2 System Integrated into the Vehicle Body 146
 6.2.3 Compact Smart Topology for Wi-Max Radio 147
 6.2.4 Roof-Mounted Four-Element Patch Array
 for V2V Communication .. 149
 6.2.5 Low Profile Beam Switched Loop Design 152
6.2.6 Low Profile Omnidirectional Horizontally Polarized Topology .. 153
6.3 Broadcasting Vehicle-Mounted Multi-Element Systems 155
 6.3.1 FM Radio Space Diversity Topology 155
 6.3.2 Examples of Diversity Systems for Digital Terrestrial TV .. 156
 6.3.3 Satellite TV Arrays ... 158
6.4 Diversity Design for RKE/RSE/TPMS ... 163
6.5 MIMO Capacity Estimation for the Vehicle-Mounted Antenna Systems ... 163
 6.5.1 Distributed Roof-Mounted Four-Element Array 163
 6.5.2 Comparison of SISO, SIMO, and MIMO Systems for Moving Cars ... 166
 6.5.3 Impact of Mutual Coupling on MIMO Vehicle-to-Vehicle System ... 168
References .. 169

7 Radar Arrays for Vehicle Applications 173
 7.1 Introduction .. 173
 7.2 Brief Review of Anti-Collision Radar Automotive Antenna Arrays .. 176
 7.2.1 Patch Double Planar Topology 176
 7.2.2 Combined Long- and Short-Range Spherical Lens Configuration ... 177
 7.2.3 Yagi-Uda Array for 76 GHz Band 177
 7.2.4 Parabolic Transreflector Array System 178
 7.2.5 Topology with Microstrip Reflect Array 179
 7.2.6 Array Concept with Cylindrical Lens Configuration 179
 7.2.7 System with Rotman Lens 180
 7.3 Systems for Road Traffic Flow Estimation 182
 7.4 Experiment Results of High Resolution System for Traffic Flow Estimation 184
References .. 184

About the Lead Author ... 187

Index ... 189