Contents

1 Challenges of Power Electronic Packaging .. 1
 1.1 Challenges of Power Semiconductor Packaging 2
 1.1.1 Impact of Power Die Shrinkage 3
 1.1.2 Power System on Chip vs. System in Package 3
 1.1.3 Power Package Foot Print Pitch vs. PCB Pad Pitch 4
 1.1.4 New Materials for Power Device 5
 1.1.5 New Materials for Power Package 6
 1.2 Summary .. 7
 References ... 7

2 Power Package Electrical Isolation Design 9
 2.1 Background ... 9
 2.2 Design Rule for Isolation .. 11
 2.2.1 Protection with Insulation 11
 2.2.2 Solid and Air Insulation ... 12
 2.2.3 Design Rule of Clearance and Creepage 13
 2.3 Estimation of the Clearance and Creepage Distances 17
 2.3.1 Required Major Functions 17
 2.3.2 Determine the Clearance and Creepage 19
 2.4 Packaging Design Layout Consideration 21
 2.5 Safety Standards and Categories of Application 23
 2.6 Summary ... 25
 References ... 25

3 Discrete Power MOSFET Package Design and Analysis 27
 3.1 An Example of a TO Power Package: Design, Assembly,
 and Mount Process ... 27
 3.2 The Trend of Using Epoxy Mold Compound 32
 3.3 Trends of Current Carrying Capability, Low $R_{ds(on)}$,
 and Multiple Direction Heat Transfer 35
3.4 Typical Discrete Power Package Designs and Constructions 39
 3.4.1 The SO-8 Wireless Power Package 39
 3.4.2 The Flip Chip Leaded Molded Package 40
 3.4.3 The MOSFET BGA ... 43
3.5 Power VDMOSFET WL-CSP with Cu Stud Bumping 44
 3.5.1 The Cu Stud Bumping Construction on a Power WL-CSP 44
 3.5.2 Investigation of BPSG Design Profile Under the Al Layer and FAB Size on Cu Stud Bumping Process 45
3.6 The Trends of Discrete Power VDMOSFET WL-CSP 54
 3.6.1 Ultrathin Silicon Substrate and Thick Back Metal 54
 3.6.2 Move the MOSFET Drain to Front Side 54
3.7 Summary .. 55
References ... 56

4 Power IC Package Design and Analysis 57
 4.1 The Evolution of the Power IC Technology 57
 4.2 Higher Power Density at the Die Level 61
 4.3 Smaller Package Footprints 67
 4.4 Typical Package Design and Analysis for Power IC 71
 4.4.1 MLP Design and Construction 71
 4.4.2 Design and Thermal Analysis of Premolded MicroPak MLP 74
 4.4.3 Package Substrate Design for Reliability 77
 4.4.4 Challenges in Wire Bonding Process for Package with Laminate Substrate .. 78
 4.4.5 Wafre Level Chip Scale Package for Power IC 82
 4.5 Summary .. 88
References ... 88

5 Power Module/SiP/3D/Stack/Embedded Packaging Design and Considerations .. 89
 5.1 Side by Side Placement Power System in Package/Module 89
 5.1.1 Lower Power Driver MOSFET System in Package 89
 5.1.2 Hybrid Power System in Package Module 104
 5.2 Power Stack Die System in Package 123
 5.2.1 The Design Concept of the Power Stack Die SiP 124
 5.2.2 TMCL Solder Joint Reliability Analysis 127
 5.2.3 Failure Analysis of the Power Module 134
 5.2.4 Discussion .. 136
 5.3 Wafer Level Power Stack Die 3D Package with TSV 136
 5.3.1 The Design Concept of the Wafer Level Power Stack Die Package .. 137
 5.3.2 Thermal Analysis .. 138
 5.3.3 Stress Analysis in Assembly Process 140
5.4 Stack and Embedded Die Power Module .. 152
 5.4.1 The Design Concept of the Stack and Embedded Die Power Package .. 153
 5.4.2 Thermal Performance Evaluation 155
 5.4.3 The Stress Assessment After the Molding Process 156
 5.4.4 The Preconditioning Stress Analysis 160
5.5 Summary ... 165
References ... 165

6 Thermal Management, Design, and Cooling for Power Electronics 167
 6.1 Thermal Resistance and Measurement Methods 167
 6.1.1 Thermal Resistance Concept 167
 6.1.2 Temperature Sensitive Parameter (TSP) Method for Junction Calibration 169
 6.1.3 Thermal Resistance Measurement Procedure 171
 6.1.4 Thermal Resistance Measurement Environments 173
 6.2 Selection of a Thermal Test Board 175
 6.2.1 Low-Effective Thermal Test Board 176
 6.2.2 High-Effective Thermal Test Board 176
 6.2.3 Thermal Test Board for Various Power Packages 177
 6.2.4 Standards for Thermal Test Board 178
 6.3 Thermal Prediction, Management and Design 182
 6.3.1 Estimation of Junction Temperature 182
 6.3.2 Estimation of the Maximum Power Dissipation 183
 6.3.3 Thermal Management and Design for Power Package 183
 6.4 Heat Transfer Analysis from Device to Board Level 191
 6.4.1 SOI Device Operation and Design Consideration 191
 6.4.2 FEA Modeling Analysis for the SOI Device and SO Assembly Package Level 193
 6.4.3 Thermal Modeling Results and Discussion 194
 6.4.4 Equivalent Resistance Method with Thermal Net 199
 6.5 Multiple-Die Thermal Analysis ... 202
 6.5.1 Multiple-Die Thermal Resistance Definition 202
 6.5.2 Application of a Power Multiple-Die Thermal Resistance .. 203
 6.6 Cooling for Power Packaging .. 206
 6.6.1 Air Flow Cooling .. 206
 6.6.2 Other Cooling Methods 211
 6.7 Summary ... 212
References ... 213
7 Material Characterization for Power Electronics Packaging

7.1 Effect of Polyimide Coating on a MOSFET Die

7.1.1 Issues of the Polyimide and EMC Materials

7.1.2 Assumptions, Material Properties, and Analysis Method

7.1.3 Analysis Model Without Considering the Silica Fillers in Mold Compound Material

7.1.4 Simulations Considering Silica Fillers in Mold Compound Material

7.2 Die Attach Stress Analysis and Material Selection

7.3 Epoxy Mold Compound Characterization

7.3.1 Behavior of Epoxy Mold Compound Material

7.3.2 Experimentation of Epoxy Mold Compound

7.3.3 Test Result, Modeling, and Discussion

7.4 Mechanical and Thermal Behavior of Ceramic/DBC Substrate

7.4.1 Ceramic Substrate in a Power Package

7.4.2 DBC Substrate

7.4.3 Thermal Performance of Ceramic vs. DBC

7.5 Solder Material Characterization

7.5.1 Introduction of the Solder Material Characterization

7.5.2 Solder Material Viscoplastic Constitutive Relation: Anand Model

7.5.3 Experiment Procedure

7.5.4 The Test and Characterization Results

7.5.5 Anand Model Parameter Data Fitting

7.5.6 Modified Anand Model Parameter

7.5.7 Discussions and Other Solder Materials

7.6 Lead Frame Material Characterization

7.7 Summary

References

8 Power Package Typical Assembly Process

8.1 Wafer Handling Process

8.2 Die Pickup

8.3 Die Attach

8.3.1 Material Constitutive Relations

8.3.2 Die Attach Model and Reflow Profile

8.3.3 FEA Simulation Result of Flip Chip Attach

8.4 Wire Bonding

8.4.1 Assumption, Material Properties, and Method of Analysis

8.4.2 Ball Wire Bonding Process with Different Parameters

8.4.3 Optimization of Wedge Bonding for a Power Package
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.5</td>
<td>Molding</td>
<td>323</td>
</tr>
<tr>
<td>8.5.1</td>
<td>Molding Flow Simulation and Analysis</td>
<td>323</td>
</tr>
<tr>
<td>8.5.2</td>
<td>Molding Ejection</td>
<td>330</td>
</tr>
<tr>
<td>8.6</td>
<td>Power Package Trim/Singulation</td>
<td>332</td>
</tr>
<tr>
<td>8.6.1</td>
<td>Punch Process Setup</td>
<td>333</td>
</tr>
<tr>
<td>8.6.2</td>
<td>Punch Process Analysis by LS-DYNA</td>
<td>335</td>
</tr>
<tr>
<td>8.6.3</td>
<td>Experimental Data</td>
<td>338</td>
</tr>
<tr>
<td>8.7</td>
<td>Summary</td>
<td>342</td>
</tr>
<tr>
<td>References</td>
<td>343</td>
<td></td>
</tr>
</tbody>
</table>

9 Power Packaging Typical Reliability and Test

9.1 Power Packaging Reliability and Test in General

9.1.1 Reliability Life | 345 |
9.1.2 Failure Rate | 346 |
9.1.3 Typical Reliability Tests for Power Package | 348 |

9.2 Power and Thermal Cycling

9.2.1 Background | 357 |
9.2.2 Die Attach Process and Material Relations | 358 |
9.2.3 Power Cycling Modeling and Discussion | 360 |
9.2.4 Thermal Cycling Modeling and Discussion | 364 |

9.3 Power Packaging Passivation Crack Analysis

9.3.1 Ratcheting Deformation Mechanism | 374 |
9.3.2 Growth of the Crack and Critical Width | 383 |
9.3.3 Design Modification | 384 |
9.3.4 Discussion | 386 |

9.4 Power Packaging Wafer Probing Test and Analysis

9.4.1 2D Analysis Model | 387 |
9.4.2 Simulation Results and Discussion of 2D Model | 389 |
9.4.3 3D Model | 391 |
9.4.4 Simulation Results and Discussion of 3D Model | 393 |

9.5 Influence of Heat Sink Mounting Procedure on Power Package Reliability

9.5.1 Background | 396 |
9.5.2 A Model of Heat Sink Mounting | 396 |
| for Power Packaging | 397 |
9.5.3 Impact of Lead Frame Design to Package Reliability | 399 |
9.5.4 Impact of Lead Frame Material Property | 401 |
9.5.5 Actual Heat Sink Mounting Test | 405 |
9.5.6 Discussion | 405 |

9.6 ACLV Moisture Analysis of Power Package

9.6.1 Solder Overflow in Die Attach Process and Finite Element Models Description | 406 |
9.6.2 Effect of Solder Overflow | 409 |
9.6.3 Effect of Mold Compound | 413 |
9.6.4 Process Improvement and Experimental Data | 413 |
9.7 Drop Test Reliability of Wafer Level Chip Scale Package
9.7.1 WL-CSP Drop Test and Analysis Model Setup
9.7.2 Drop Impact Simulation/Test with Different Design Variable and Discussion
9.7.3 Drop Test
9.8 Summary

References

10 Power Packaging Modeling and Challenges
10.1 Modeling Role in Power Electronic Industry
10.2 Challenges of Modeling Tools and Methodology
10.2.1 Challenges of Modeling Tools
10.2.2 Numerical Methods of Tools
10.2.3 The Next Step of Modeling Tool
10.3 Modeling Requirements in Semiconductor
10.3.1 Front-End Process Modeling
10.3.2 Power Device Modeling
10.3.3 Modeling of Interconnects Passives
10.3.4 Circuits Modeling
10.3.5 Power Package Level Simulation
10.4 Modeling Methodologies Needed in Power Packaging
10.4.1 The Methodologies of Power Packaging
10.4.2 The Methodologies of Power Packaging
10.5 Advanced Modeling Techniques
10.5.1 Finite Element Method
10.5.2 Advanced Modeling Techniques in Finite Element Analysis
10.5.3 Finite Element Application in Semiconductor Packaging Modeling
10.6 Modeling Trends in Power Electronic Packaging
10.6.1 Codesign Automation Simulation
10.6.2 Advanced Modeling Methodologies in Power Packaging
10.6.3 Multiphysics and Multiscale Modeling
10.7 Summary

References

11 Power Package Thermal and Mechanical Codesign Simulation Automation
11.1 Power Package Thermal Modeling and Test Correlation
11.1.1 Background
11.1.2 Thermal Resistance Test Procedure

References
11.1.3 Influence of Each Factor in Thermal Resistance Test .. 468
11.1.4 Package Solid Model .. 469
11.1.5 Material Properties and Boundary Conditions 469
11.1.6 Discussion of the Thermal Simulation and Correlation 475

11.2 Wafer Level Power Package Parameter Thermal Simulation .. 475
11.2.1 Background for the Power WL-CSP Thermal Analysis .. 476
11.2.2 Construction of the Parametric Model .. 477
11.2.3 Thermal Automation by Using ANSYS APDL .. 480
11.2.4 Application of the Parametric Model .. 482
11.2.5 Thermal Simulation Analysis .. 483
11.2.6 Result Discussion .. 490

11.3 Package Thermal, Mechanical, Hygroscopic, and Vapor Pressure Codesign Automation Simulation 491
11.3.1 Background of the Codesign Automation 491
11.3.2 Basic Formulations .. 493
11.3.3 Development of Automated Codesign Simulation System for Thermal, Mechanical, Moisture, and Vapor Analysis .. 496
11.3.4 Application of AutoSim .. 503

11.4 Summary ... 514
References.. 515

12 Power Package Electrical and Multiple Physics Simulation 517
12.1 Power Package Electrical Simulation .. 517
12.1.1 Extracting the Inductance and Resistance 518
12.1.2 Methodology for Extracting Capacitance 525

12.2 Defect Impact on Power Package Electrical Performance 532
12.2.1 Background .. 532
12.2.2 Resistance, Inductance and the Fusing Current 533
12.2.3 Impact of Wire Bonding Related Defect 534
12.2.4 Impact of Die Attach Solder Void 541
12.2.5 Discussion and Conclusions .. 543

12.3 Power UIL/UIS Test and Simulation .. 545
12.3.1 Background .. 545
12.3.2 DC Test .. 546
12.3.3 AC Test .. 549
12.3.4 Fusing Current Test.. 549
12.3.5 UIL Test .. 551
12.3.6 Discussion and Conclusion .. 555
Power Electronic Packaging
Design, Assembly Process, Reliability and Modeling
Liu, Y.
2012, XVIII, 594 p., Hardcover