Contents

1 **An Overview of the VLSI Interconnect Problem** .. 1
 1.1 Driving Forces: Economy and Technology ... 1
 1.2 Complexity and Connectivity: A System Architect’s View 2
 1.3 Complexity and Connectivity: A Process Technologist’s View 4
 1.4 The Interconnect Scaling Problem ... 5
 1.5 Implications of the Interconnect Scaling Problem 7
 1.6 The Value of Multi-net Optimization ... 8

2 **Interconnect Aspects in Design Methodology and EDA Tools** 11
 2.1 Interconnect Planning .. 11
 2.2 Interconnect Synthesis ... 13
 2.3 Final Generation of Interconnect Layout ... 15
 2.4 Future Requirements for Interconnect Synthesis 15

3 **Scaling Dependent Electrical Modeling of Interconnects** 17
 3.1 Technology Scaling ... 17
 3.1.1 Scaling of Transistors .. 17
 3.1.2 Scaling of Interconnects ... 18
 3.2 Circuit Models of Interconnect .. 18
 3.2.1 Ideal Interconnect ... 19
 3.2.2 Capacitive Interconnect .. 20
 3.2.3 Resistive Interconnect ... 21
 3.2.4 Resistive Interconnect Trees .. 22
 3.3 Scaling Effects on Interconnect Delay .. 26
 3.4 Cross-Capacitances and Their Decoupling with Miller Factor 28
 3.5 Interconnect Power .. 30
 3.6 Interconnect Noise (Crosstalk) ... 31
4 Frameworks for Interconnect Optimization
 4.1 Net-by-Net Optimization
 4.2 Multi-net Optimizations
 4.2.1 Bundle of Wires
 4.2.2 General Wire Layouts with a Preferred Direction
 4.2.3 Optimization by Wire Ordering
 4.2.4 Interconnect Optimization in Automated Layout Migration
 4.2.5 Summary of Interconnect Optimization Frameworks

5 Net-by-Net Wire Optimization
 5.1 Single-Stage Point-to-Point Wires
 5.1.1 Stage Delay with Capacitive Wire (Negligible Wire Resistivity)
 5.1.2 Stage Delay with Resistive Wire
 5.1.3 Repeater Insertion
 5.1.4 Wire Sizing (Tapering)
 5.2 Multistage Logic Paths
 5.2.1 Logical Effort Optimization
 5.2.2 Logic Gates as Repeaters
 5.2.3 Unified Logical Effort – Combined Optimization of Gates and Wires
 5.3 Tree-Structured Nets

6 Multi-net Sizing and Spacing of Bundle Wires
 6.1 The Interconnect Bundle Model
 6.2 Power, Delay and Noise Metrics for a Bundle of Parallel Wires
 6.2.1 Calculating Parameters of Effective Driver and Effective Load
 6.2.2 The Role of Cross-Capacitance in Delay and Power Calculations for a Bundle of Parallel Wires
 6.2.3 Power and Delay Objectives for Optimizing a Bundle of Wires
 6.3 Bundle Spacing and Sizing with Continuous Design Rules
 6.3.1 Optimizing the Total Power of a Wire Bundle
 6.3.2 Optimizing the Total Sum (or Average) of Delays (Slacks)
 6.3.3 Minimizing Maximal Delays and Negative Slack: MinMax Problems
 6.3.4 Iterative Algorithm for MinMax Delay or Slack
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.3.5</td>
<td>The Relation Between the Minimal Total Sum and MinMax Solutions</td>
</tr>
<tr>
<td>6.4</td>
<td>Bundle Spacing and Sizing with Discrete Design Rules</td>
</tr>
<tr>
<td>6.4.1</td>
<td>Introduction to Discrete Design Rules Problems</td>
</tr>
<tr>
<td>6.4.2</td>
<td>Formal Definition of Discrete-Rule Bundle Problems</td>
</tr>
<tr>
<td>6.4.3</td>
<td>Discrete Width and Space Allocation</td>
</tr>
<tr>
<td>7</td>
<td>Multi-net Sizing and Spacing in General Layouts</td>
</tr>
<tr>
<td>7.1</td>
<td>A One-Dimensional Single Objective</td>
</tr>
<tr>
<td>7.1.1</td>
<td>Problem Definition</td>
</tr>
<tr>
<td>7.1.2</td>
<td>Necessary and Sufficient Conditions for Minimal Power</td>
</tr>
<tr>
<td>7.1.3</td>
<td>A Graph Model for the Spacing Problem</td>
</tr>
<tr>
<td>7.1.4</td>
<td>An Algebraic Solution for Power Minimization</td>
</tr>
<tr>
<td>7.1.5</td>
<td>Iterative Algorithms for Power Minimization</td>
</tr>
<tr>
<td>7.1.6</td>
<td>Maintaining Delay Constraints while Minimizing Power</td>
</tr>
<tr>
<td>7.2</td>
<td>Optimization of the Weighted Power-Delay Objective</td>
</tr>
<tr>
<td>7.2.1</td>
<td>Problem Definition</td>
</tr>
<tr>
<td>7.2.2</td>
<td>Solution of the Optimal WPDS</td>
</tr>
<tr>
<td>7.2.3</td>
<td>Practical Considerations in Power–Delay Optimization</td>
</tr>
<tr>
<td>7.3</td>
<td>Optimizing All the Layers Together</td>
</tr>
<tr>
<td>7.3.1</td>
<td>Timing InterDependency Between Wire Segments in a Net</td>
</tr>
<tr>
<td>7.3.2</td>
<td>Nonoptimality of Wire-by-Wire Optimization</td>
</tr>
<tr>
<td>7.3.3</td>
<td>All-Layers Optimization Problem Definition</td>
</tr>
<tr>
<td>7.3.4</td>
<td>Algorithm for a Solution of the Optimal Spacing Problem</td>
</tr>
<tr>
<td>7.3.5</td>
<td>Practical Considerations</td>
</tr>
<tr>
<td>7.3.6</td>
<td>Layout Separation</td>
</tr>
<tr>
<td>7.3.7</td>
<td>Examples and Experimental Results</td>
</tr>
<tr>
<td>7.4</td>
<td>Discussion on the Optimization of General Layouts with Discrete Design Rules</td>
</tr>
<tr>
<td>7.4.1</td>
<td>A Graph Model of Wire Width and Space</td>
</tr>
<tr>
<td>7.4.2</td>
<td>Complexity Analysis</td>
</tr>
<tr>
<td>7.4.3</td>
<td>Implementation and Experimental Results</td>
</tr>
<tr>
<td>8</td>
<td>Interconnect Optimization by Net Ordering</td>
</tr>
<tr>
<td>8.1</td>
<td>Problem Formulation</td>
</tr>
<tr>
<td>8.2</td>
<td>The Optimality of Symmetric Hill Order</td>
</tr>
</tbody>
</table>
8.2.1 Wires of Uniform Width 171
8.2.2 Nonuniform Wire Widths Implied by Impedance Matching . . . 177
8.2.3 A Symmetric Hill Order for an Arbitrary Wire Width 177

8.3 Optimizing the Worst Wire Delay . 179
8.4 Implications of Miller Coupling Factor 179
8.5 Crosstalk Noise Reduction . 185
8.6 Experimental Results . 186
8.7 The Combinatorial Structure of Wire Ordering Problems 191

9 Layout Migration .. 195
9.1 Compaction Algorithms ... 197
9.2 The Placement-Routing Handshake 198
9.3 Algorithmic Framework for Migration 200
 9.3.1 Modeling Interconnects by a Visibility Graph 202
 9.3.2 Description of the Algorithm 203
 9.3.3 Construction of the Layout Graph 205
 9.3.4 Merging Block Instances . 207
 9.3.5 Graph Merging . 207
 9.3.6 Graph Reduction . 208
 9.3.7 Derivation of Exact Solution . 210
9.4 Correctness of the Migration Algorithm 211
 9.4.1 Layouts and Graphs . 212
 9.4.2 The Algorithm’s Invariants . 215
9.5 Experimental Results ... 217
Conclusions ... 218

10 Future Directions in Interconnect Optimization 221

References .. 223

Index .. 231
Multi-Net Optimization of VLSI Interconnect
Moiseev, K.; Kolodny, A.; Wimer, S.
2015, XVI, 233 p. 124 illus., 44 illus. in color., Hardcover
ISBN: 978-1-4614-0820-8