Contents

1 Background .. 1
 1.1 Era of Digital Convergence ... 1
 1.2 Heterogeneous Parallelism Based on Embedded Processors 3
References ... 8

2 Heterogeneous Multicore Architecture ... 11
 2.1 Architecture Model ... 11
 2.2 Address Space .. 16
References ... 18

3 Processor Cores .. 19
 3.1 Embedded CPU Cores .. 19
 3.1.1 SuperH™ RISC Engine Family Processor Cores .. 20
 3.1.2 Efficient Parallelization of SH-4 ... 22
 3.1.3 Efficient Frequency Enhancement of SH-X .. 32
 3.1.4 Frequency and Efficiency Enhancement of SH-X2 42
 3.1.5 Efficient Parallelization of SH-4 FPU ... 44
 3.1.6 Efficient Frequency Enhancement of SH-X FPU 56
 3.1.7 Multicore Architecture of SH-X3 ... 67
 3.1.8 Efficient ISA and Address-Space Extension of SH-X4 69
 3.2 Flexible Engine/Generic ALU Array (FE–GA) ... 74
 3.2.1 Architecture Overview ... 75
 3.2.2 Arithmetic Blocks ... 77
 3.2.3 Memory Blocks and Internal Network .. 78
 3.2.4 Sequence Manager and Configuration Manager 80
 3.2.5 Operation Flow of FE–GA ... 82
 3.2.6 Software Development Environment ... 83
 3.2.7 Implementation of Fast Fourier Transform on FE–GA 85
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.3 Matrix Engine (MX)</td>
<td></td>
<td>88</td>
</tr>
<tr>
<td>3.3.1 MX-1</td>
<td></td>
<td>89</td>
</tr>
<tr>
<td>3.3.2 MX-2</td>
<td></td>
<td>97</td>
</tr>
<tr>
<td>3.4 Video Processing Unit</td>
<td></td>
<td>101</td>
</tr>
<tr>
<td>3.4.1 Introduction</td>
<td></td>
<td>101</td>
</tr>
<tr>
<td>3.4.2 Video Codec Architecture</td>
<td></td>
<td>102</td>
</tr>
<tr>
<td>3.4.3 Processor Elements</td>
<td></td>
<td>111</td>
</tr>
<tr>
<td>3.4.4 Implementation Results</td>
<td></td>
<td>117</td>
</tr>
<tr>
<td>3.4.5 Conclusion</td>
<td></td>
<td>118</td>
</tr>
<tr>
<td>3.4 Video Processing Unit</td>
<td></td>
<td>101</td>
</tr>
<tr>
<td>3.4.1 Introduction</td>
<td></td>
<td>101</td>
</tr>
<tr>
<td>3.4.2 Video Codec Architecture</td>
<td></td>
<td>102</td>
</tr>
<tr>
<td>3.4.3 Processor Elements</td>
<td></td>
<td>111</td>
</tr>
<tr>
<td>3.4.4 Implementation Results</td>
<td></td>
<td>117</td>
</tr>
<tr>
<td>3.4.5 Conclusion</td>
<td></td>
<td>118</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>119</td>
</tr>
<tr>
<td>4 Chip Implementations</td>
<td></td>
<td>123</td>
</tr>
<tr>
<td>4.1 Multicore SoC with Highly Efficient Cores</td>
<td></td>
<td>123</td>
</tr>
<tr>
<td>4.2 RP-1 Prototype Chip</td>
<td></td>
<td>126</td>
</tr>
<tr>
<td>4.2.1 RP-1 Specifications</td>
<td></td>
<td>127</td>
</tr>
<tr>
<td>4.2.2 SH-X3 Cluster</td>
<td></td>
<td>128</td>
</tr>
<tr>
<td>4.2.3 Dynamic Power Management</td>
<td></td>
<td>128</td>
</tr>
<tr>
<td>4.2.4 Core Snoop Sequence Optimization</td>
<td></td>
<td>129</td>
</tr>
<tr>
<td>4.2.5 SuperHyway Bus</td>
<td></td>
<td>131</td>
</tr>
<tr>
<td>4.2.6 Chip Integration</td>
<td></td>
<td>132</td>
</tr>
<tr>
<td>4.2.7 Performance Evaluations</td>
<td></td>
<td>134</td>
</tr>
<tr>
<td>4.3 RP-2 Prototype Chip</td>
<td></td>
<td>136</td>
</tr>
<tr>
<td>4.3.1 RP-2 Specifications</td>
<td></td>
<td>136</td>
</tr>
<tr>
<td>4.3.2 Power Domain and Partial Power-Off</td>
<td></td>
<td>137</td>
</tr>
<tr>
<td>4.3.3 Synchronization Support Hardware</td>
<td></td>
<td>138</td>
</tr>
<tr>
<td>4.3.4 Interrupt Handling for Multicore</td>
<td></td>
<td>140</td>
</tr>
<tr>
<td>4.3.5 Chip Integration and Evaluation</td>
<td></td>
<td>141</td>
</tr>
<tr>
<td>4.4 RP-X Prototype Chip</td>
<td></td>
<td>143</td>
</tr>
<tr>
<td>4.4.1 RP-X Specifications</td>
<td></td>
<td>143</td>
</tr>
<tr>
<td>4.4.2 Dynamically Reconfigurable Processor FE–GA</td>
<td></td>
<td>145</td>
</tr>
<tr>
<td>4.4.3 Massively Parallel Processor MX-2</td>
<td></td>
<td>146</td>
</tr>
<tr>
<td>4.4.4 Programmable Video Processing Core VPU5</td>
<td></td>
<td>146</td>
</tr>
<tr>
<td>4.4.5 Global Clock Tree Optimization</td>
<td></td>
<td>147</td>
</tr>
<tr>
<td>4.4.6 Memory Interface Optimization</td>
<td></td>
<td>148</td>
</tr>
<tr>
<td>4.4.7 Chip Integration and Evaluation</td>
<td></td>
<td>149</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>150</td>
</tr>
<tr>
<td>5 Software Environments</td>
<td></td>
<td>153</td>
</tr>
<tr>
<td>5.1 Linux® on Multicore Processor</td>
<td></td>
<td>153</td>
</tr>
<tr>
<td>5.1.1 Porting SMP Linux</td>
<td></td>
<td>153</td>
</tr>
<tr>
<td>5.1.2 Power-Saving Features</td>
<td></td>
<td>157</td>
</tr>
<tr>
<td>5.1.3 Physical Address Extension</td>
<td></td>
<td>161</td>
</tr>
<tr>
<td>5.2 Domain-Partitioning System</td>
<td></td>
<td>165</td>
</tr>
<tr>
<td>5.2.1 Introduction</td>
<td></td>
<td>165</td>
</tr>
<tr>
<td>5.2.2 Trends in Embedded Systems</td>
<td></td>
<td>166</td>
</tr>
</tbody>
</table>
5.2.3 Programming Model on Multicore Processors 166
5.2.4 Partitioning of Multicore Processor Systems 168
5.2.5 Multicore Processor with Domain-Partitioning
 Mechanism ... 170
5.2.6 Evaluation ... 175
References .. 177

6 Application Programs and Systems .. 179
6.1 AAC Encoding ... 179
 6.1.1 Target System ... 179
 6.1.2 Processing Flow of AAC Encoding 181
 6.1.3 Process Mapping on FE-GA .. 182
 6.1.4 Data Transfer Optimization with DTU 182
 6.1.5 Performance Evaluation on CPU and FE-GA 184
 6.1.6 Performance Evaluation in
 Parallelized Processing ... 185
6.2 Real-Time Image Recognition ... 187
 6.2.1 MX Library .. 187
 6.2.2 MX Application ... 189
6.3 Applications on SMP Linux ... 193
 6.3.1 Load Balancing on RP-1 .. 194
 6.3.2 Power Management on RP-2 ... 198
 6.3.3 Image Filtering on RP-X .. 206
6.4 Video Image Search .. 210
 6.4.1 Implementation of Main Functions .. 212
 6.4.2 Implementation of Face Recognition
 and GUI Controls ... 213
References ... 217

Index ... 219
Heterogeneous Multicore Processor Technologies for Embedded Systems
2012, XII, 224 p., Hardcover
ISBN: 978-1-4614-0283-1