1 Introduction ... 1
 1.1 Motivation .. 1
 1.2 Book Research Objectives 4
 1.3 Outline of the Book ... 5

2 Modulation Schemes Effect on RF Power Amplifier
Nonlinearity and RFPA Linearization Techniques 7
 2.1 Introduction ... 7
 2.2 RF Modulation Scheme in Bandpass Radio
Communication Channel .. 7
 2.2.1 Ideal Radio Transmitter .. 9
 2.2.2 RF Power Amplifier Linearity for Non-
Modulated Signal .. 9
 2.2.3 RF Power Amplifier Linearity for Modulated Signals 14
 2.2.4 RF Power Amplifier Spectral Regrowth:
Out-of-band Distortion ... 16
 2.2.5 Error Vector Magnitude Signal Modulation
Quality: In-band Distortion 19
 2.3 Role of RF Power Amplifier Linearization Techniques 20
 2.3.1 RF Power Amplifier Power Back-off 21
 2.3.2 RF Power Amplifier Feedforward Linearization 22
 2.3.3 RF Power Amplifier Cartesian Indirect Feedback
Linearization .. 23
 2.3.4 RF Power Amplifier Polar Feedback Linearization 24
 2.3.5 RF Power Amplifier RF Predistortion Linearization 24
 2.4 Radio-over-Fiber for Wireless Communication 26
 2.5 Summary ... 28

3 Distributed Amplification Principles and Transconductor
Nonlinearity Compensation ... 29
 3.1 Introduction ... 29
3.2 Distributed Amplification Principles

- **3.2.1 Additive Distributed Versus Product Cascaded Amplification** .. 29
- **3.2.2 Lumped Constant Delay Line Characteristics** .. 33
- **3.2.3 Lossless Distributed Amplification** .. 36
- **3.2.4 Lossy Distributed Amplification** ... 38

3.3 Transconductor Gain Cells for Fully-Differential Distributed Amplifiers 42

3.4 Chapter Summary ... 46

4 Distributed RF Linearization Circuit Applications .. 47

4.1 Introduction .. 47

4.2 Linearized CMOS Distributed Active Power Splitter 47

- **4.2.1 Amplitude and Phase Imbalance of Linearized CMOS Distributed Active Power Splitter** 50
- **4.2.2 CMOS Distributed Active Power Splitter Using Multiple-Gated Transistor Linearization** 51

4.3 Linearized CMOS Distributed Matrix Amplifier Architecture 55

- **4.3.1 CMOS Distributed 2 × 3 Matrix Amplifier with Interleaved Distributed Loading Technique** 56
- **4.3.2 Proposed CMOS Interleaved Distributed 2 × 3 Matrix Amplifier with Post Distortion and Gate Optimum Bias Linearization Technique** 57

4.4 Linearized CMOS Distributed Paraphase Amplifier 63

- **4.4.1 Amplitude and Phase Imbalance of Linearized CMOS Distributed Paraphase Amplifier** 66
- **4.4.2 CMOS Distributed Paraphase Amplifier Employing Derivative Superposition Linearization** 68

4.5 Chapter Summary .. 70

5 Linearized CMOS Distributed Bidirectional Amplifier with Cross-Coupled Compensator .. 71

5.1 Introduction .. 71

5.2 Linearized CMOS Distributed Bidirectional Amplifier Circuit Design Analysis ... 71

5.3 CMOS Cross-Coupled Compensator Transconductor as DA Gain Cell for Linearity Improvement and Enhanced Tunability ... 75

5.4 Effect of Nonlinear Drain Capacitance on DA Linearization Bandwidth .. 80

5.5 Transmission-Lines Multi-level Inductor Modeling in Transmission-Lines for Silicon Chip Area Reduction .. 86

5.6 DA Based Duplexer with Integrated Antenna on Silicon Replacing DA M-Derived Matching Network .. 90

- **5.6.1 Varactor-Tuned LC Networks** ... 92

5.7 Chapter Summary .. 92
6 Linearized CMOS Distributed Bidirectional Amplifier

Silicon Chip Implementation

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1 Introduction</td>
<td>95</td>
</tr>
<tr>
<td>6.2 Linearized CMOS Bidirectional Distributed Amplifier High Frequency Layout Considerations</td>
<td>95</td>
</tr>
<tr>
<td>6.3 Silicon CMOS RF Multi-level Inductors Implementation</td>
<td>96</td>
</tr>
<tr>
<td>6.4 CMOS Bidirectional Distributed Amplifier Cross-Coupled Compensator Gain Cell Layout</td>
<td>98</td>
</tr>
<tr>
<td>6.5 Linearized CMOS Bidirectional Distributed Amplifier Full Layout</td>
<td>99</td>
</tr>
<tr>
<td>6.6 Chapter Summary</td>
<td>102</td>
</tr>
</tbody>
</table>

7 Linearized CMOS Distributed Bidirectional Amplifier

Experimental Setups and Chip Measurement Results

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1 Introduction</td>
<td>103</td>
</tr>
<tr>
<td>7.2 High-Frequency On-Wafer Measurement System</td>
<td>103</td>
</tr>
<tr>
<td>7.3 S-Parameter and Harmonics Power Measurements</td>
<td>105</td>
</tr>
<tr>
<td>7.4 Noise Figure Setup and Measurement</td>
<td>112</td>
</tr>
<tr>
<td>7.5 Summary</td>
<td>115</td>
</tr>
</tbody>
</table>

8 Conclusion

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1 Summary</td>
<td>117</td>
</tr>
<tr>
<td>8.2 Book Research List of Contributions</td>
<td>118</td>
</tr>
<tr>
<td>8.3 Research Future Work</td>
<td>119</td>
</tr>
</tbody>
</table>

A Quadrature Signal Processing

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.1 Analog Modulation Transmission</td>
<td>121</td>
</tr>
<tr>
<td>A.2 Why Digital Modulation Transmission?</td>
<td>121</td>
</tr>
<tr>
<td>A.2.1 Time Domain Transmitted Signal Mapping into Phase Plane</td>
<td>125</td>
</tr>
<tr>
<td>A.2.2 IQ Data Modulation Technique in Quadrature Processing Systems</td>
<td>125</td>
</tr>
</tbody>
</table>

References

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>References</td>
<td>129</td>
</tr>
</tbody>
</table>
Distributed CMOS Bidirectional Amplifiers
Broadbanding and Linearization Techniques
El-Khatib, Z.; MacEachern, L.; Mahmoud, S.A.
2012, XXVI, 134 p., Hardcover