Contents

1 Introduction ... 1
1.1 Hybrid Electric Vehicles 1
1.2 HEV Architectures ... 2
1.3 Energy Analysis of Hybrid Electric Vehicles 4
1.4 Book Structure .. 5
References ... 6

2 HEV Modeling ... 7
2.1 Introduction ... 7
2.2 Modeling for Energy Analysis 7
2.3 Vehicle-Level Energy Analysis 8
 2.3.1 Equations of Motion 8
 2.3.2 Forward and Backward Modeling Approaches 10
 2.3.3 Vehicle Energy Balance 13
 2.3.4 Driving Cycles .. 15
2.4 Powertrain Components 18
 2.4.1 Internal Combustion Engine 18
 2.4.2 Torque Converter 19
 2.4.3 Gear Ratios and Mechanical Gearbox 20
 2.4.4 Planetary Gear Sets 22
 2.4.5 Wheels, Brakes, and Tires 23
 2.4.6 Electric Machines 25
 2.4.7 Batteries ... 25
 2.4.8 Engine Accessories and Auxiliary Loads 29
References ... 30

3 The Energy Management Problem in HEVs 31
3.1 Introduction ... 31
3.2 Energy Management of Hybrid Electric Vehicles 31
3.3 Classification of Energy Management Strategies 33
3.4 The Optimal Control Problem in Hybrid Electric Vehicles
 3.4.1 Problem Formulation
 3.4.2 General Problem Formulation
References

4 Dynamic Programming
 4.1 Introduction
 4.2 General Formulation
 4.3 Application of DP to the Energy Management Problem in HEVs
 4.3.1 Implementation Example
References

5 Pontryagin’s Minimum Principle
 5.1 Introduction
 5.2 Minimum Principle for Problems with Constraints on the State
 5.2.1 On the System State Boundaries
 5.2.2 Notes on the Minimum Principle
 5.3 Pontryagin’s Minimum Principle for the Energy Management Problem in HEVs
 5.3.1 Power-Based PMP Formulation
 5.4 Co-State \(\lambda \) and Cost-to-Go Function
References

6 Equivalent Consumption Minimization Strategy
 6.1 Introduction
 6.2 ECMS-Based Supervisory Control
 6.3 Equivalence Between Pontryagin's Minimum Principle and ECMS
 6.4 Correction of Fuel Consumption to Account for SOC Variation
 6.5 Historical Note: One of the First Examples of ECMS Implementation
References

7 Adaptive Optimal Supervisory Control Methods
 7.1 Introduction
 7.2 Review of Adaptive Supervisory Control Methods
 7.2.1 Adaptation Based on Driving Cycle Prediction
 7.2.2 Adaptation Based on Driving Pattern Recognition
 7.3 Adaptation Based on Feedback from SOC
 7.3.1 Analysis and Comparison of A-PMP Methods
 7.3.2 Calibration of Adaptive Strategies
References
8 Case Studies .. 89
 8.1 Introduction .. 89
 8.2 Parallel Architecture 89
 8.2.1 Powertrain Model 89
 8.2.2 Optimal Control Problem Solution 92
 8.2.3 Model Implementation 95
 8.2.4 Simulation Results 98
 8.3 Power-Split Architecture 101
 8.3.1 Powertrain Model 101
 8.3.2 Optimal Control Problem Solution 105
 8.3.3 Model Implementation 105
 8.3.4 Simulation Results 106
References ... 109

Series Editors’ Biographies 111
Hybrid Electric Vehicles
Energy Management Strategies
Onori, S.; Serra, L.; Rizzoni, G.
2016, XV, 112 p. 71 illus., 3 illus. in color. With online files/update., Softcover