Contents

1 Introduction .. 1
 1.1 Control Systems, Models and Algorithms 2
 1.2 Repetition and Iteration 3
 1.2.1 Periodic Demand Signals 3
 1.2.2 Repetitive Control and Multipass Systems 4
 1.2.3 Iterative Control Examples 6
 1.3 Dynamical Properties of Iteration: A Review of Ideas . . 9
 1.4 So What Do We Need? 12
 1.4.1 An Overview of Mathematical Techniques 13
 1.4.2 The Conceptual Basis for Algorithms 15
 1.5 Discussion and Further Background Reading 16

2 Mathematical Methods 19
 2.1 Elements of Matrix Theory 19
 2.2 Quadratic Optimization and Quadratic Forms 27
 2.2.1 Completing the Square 27
 2.2.2 Singular Values, Lagrangians
 and Matrix Norms 28
 2.3 Banach Spaces, Operators, Norms and Convergent
 Sequences 29
 2.3.1 Vector Spaces 29
 2.3.2 Normed Spaces 31
 2.3.3 Convergence, Closure, Completeness
 and Banach Spaces 33
 2.3.4 Linear Operators and Dense Subsets 34
 2.4 Hilbert Spaces 37
 2.4.1 Inner Products and Norms 37
 2.4.2 Norm and Weak Convergence 39
 2.4.3 Adjoint and Self-adjoint Operators
 in Hilbert Space 41
2.5 Real Hilbert Spaces, Convex Sets and Projections
2.5 Optimal Control Problems in Hilbert Space
- **2.6.1** Proof by Completing the Square
- **2.6.2** Proof Using the Projection Theorem
- **2.6.3** Discussion
2.7 Further Discussion and Bibliography

3 State Space Models
3.1 Models of Continuous State Space Systems
- **3.1.1** Solution of the State Equations
- **3.1.2** The Convolution Operator and the Impulse Response
- **3.1.3** The System as an Operator Between Function Spaces
3.2 Laplace Transforms
3.3 Transfer Function Matrices, Poles, Zeros and Relative Degree
3.4 The System Frequency Response
3.5 Discrete Time, Sampled Data State Space Models
- **3.5.1** State Space Models as Difference Equations
- **3.5.2** Solution of Linear, Discrete Time State Equations
- **3.5.3** The Discrete Convolution Operator and the Discrete Impulse Response Sequence
3.6 \mathcal{Z}-Transforms and the Discrete Transfer Function Matrix
- **3.6.1** Discrete Transfer Function Matrices, Poles, Zeros and the Relative Degree
- **3.6.2** The Discrete System Frequency Response
3.7 Multi-rate Discrete Time Systems
3.8 Controllability, Observability, Minimal Realizations and Pole Allocation
3.9 Inverse Systems
- **3.9.1** The Case of $m = \ell$, Zeros and v^\dagger
- **3.9.2** Left and Right Inverses When $m \neq \ell$
3.10 Quadratic Optimal Control of Linear Continuous Systems
- **3.10.1** The Relevant Operators and Spaces
- **3.10.2** Computation of the Adjoint Operator
- **3.10.3** The Two Point Boundary Value Problem
- **3.10.4** The Riccati Equation and a State Feedback Plus Feedforward Representation
- **3.10.5** An Alternative Riccati Representation
3.11 Further Reading and Bibliography
Matrix Models, Supervectors and Discrete Systems

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1 Supervectors and the Matrix Model</td>
<td>87</td>
</tr>
<tr>
<td>4.2 The Algebra of Series and Parallel Connections</td>
<td>88</td>
</tr>
<tr>
<td>4.3 The Transpose System and Time Reversal</td>
<td>89</td>
</tr>
<tr>
<td>4.4 Invertibility, Range and Relative Degrees</td>
<td>90</td>
</tr>
<tr>
<td>4.4.1 The Relative Degree and the Kernel and Range of G</td>
<td>92</td>
</tr>
<tr>
<td>4.4.2 The Range of G and Decoupling Theory</td>
<td>93</td>
</tr>
<tr>
<td>4.5 The Range and Kernel and the Use of the Inverse System</td>
<td>96</td>
</tr>
<tr>
<td>4.5.1 A Partition of the Inverse</td>
<td>96</td>
</tr>
<tr>
<td>4.5.2 Ensuring Stability of $P^{-1}(z)$</td>
<td>98</td>
</tr>
<tr>
<td>4.6 The Range, Kernel and the \mathcal{H}^* Canonical Form</td>
<td>99</td>
</tr>
<tr>
<td>4.6.1 Factorization Using State Feedback and Output Injection</td>
<td>99</td>
</tr>
<tr>
<td>4.6.2 The \mathcal{H}^* Canonical Form</td>
<td>100</td>
</tr>
<tr>
<td>4.6.3 The Special Case of Uniform Rank Systems</td>
<td>102</td>
</tr>
<tr>
<td>4.7 Quadratic Optimal Control of Linear Discrete Systems</td>
<td>104</td>
</tr>
<tr>
<td>4.7.1 The Adjoint and the Discrete Two Point Boundary Value Problem</td>
<td>105</td>
</tr>
<tr>
<td>4.7.2 A State Feedback/Feedforward Solution</td>
<td>106</td>
</tr>
<tr>
<td>4.8 Frequency Domain Relationships</td>
<td>107</td>
</tr>
<tr>
<td>4.8.1 Bounding Norms on Finite Intervals</td>
<td>108</td>
</tr>
<tr>
<td>4.8.2 Computing the Norm Using the Frequency Response</td>
<td>109</td>
</tr>
<tr>
<td>4.8.3 Quadratic Forms and Positive Real Transfer Function Matrices</td>
<td>110</td>
</tr>
<tr>
<td>4.8.4 Frequency Dependent Lower Bounds</td>
<td>112</td>
</tr>
<tr>
<td>4.9 Discussion and Further Reading</td>
<td>116</td>
</tr>
</tbody>
</table>

Iterative Learning Control: A Formulation

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1 Abstract Formulation of a Design Problem</td>
<td>119</td>
</tr>
<tr>
<td>5.1.1 The Design Problem</td>
<td>120</td>
</tr>
<tr>
<td>5.1.2 Input and Error Update Equations: The Linear Case</td>
<td>123</td>
</tr>
<tr>
<td>5.1.3 Robustness and Uncertainty Models</td>
<td>124</td>
</tr>
<tr>
<td>5.2 General Conditions for Convergence of Linear Iterations</td>
<td>128</td>
</tr>
<tr>
<td>5.2.1 Spectral Radius and Norm Conditions</td>
<td>129</td>
</tr>
<tr>
<td>5.2.2 Infinite Dimensions with $r(L) = |L| = 1$ and $L = L^*$</td>
<td>132</td>
</tr>
<tr>
<td>5.2.3 Relaxation, Convergence and Robustness</td>
<td>134</td>
</tr>
<tr>
<td>5.2.4 Eigenstructure Interpretation</td>
<td>138</td>
</tr>
<tr>
<td>5.2.5 Formal Computation of the Eigenvalues and Eigenfunctions</td>
<td>139</td>
</tr>
</tbody>
</table>
5.3 Robustness, Positivity and Inverse Systems .. 141
5.4 Discussion and Further Reading .. 143

6 Control Using Inverse Model Algorithms ... 145
6.1 Inverse Model Control: A Benchmark Algorithm ... 145
6.1.1 Use of a Right Inverse of the Plant ... 145
6.1.2 Use of a Left Inverse of the Plant ... 147
6.1.3 Why the Inverse Model Is Important ... 149
6.1.4 Inverse Model Algorithms for State Space Models .. 151
6.1.5 Robustness Tests and Multiplicative Error Models 152
6.2 Frequency Domain Robustness Criteria ... 156
6.2.1 Discrete System Robust Monotonicity Tests ... 156
6.2.2 Improving Robustness Using Relaxation .. 158
6.2.3 Discrete Systems: Robustness and Non-monotonic Convergence 159
6.3 Discussion and Further Reading .. 161

7 Monotonicity and Gradient Algorithms ... 165
7.1 Steepest Descent: Achieving Minimum Energy Solutions 166
7.2 Application to Discrete Time State Space Systems .. 168
7.2.1 Algorithm Construction ... 169
7.2.2 Eigenstructure Interpretation: Convergence in Finite Iterations 171
7.2.3 Frequency Domain Attenuation .. 174
7.3 Steepest Descent for Continuous Time State Space Systems 178
7.4 Monotonic Evolution Using General Gradients .. 180
7.5 Discrete State Space Models Revisited ... 183
7.5.1 Gradients Using the Adjoint of a State Space System 183
7.5.2 Why the Case of $m = \ell$ May Be Important in Design 192
7.5.3 Robustness Tests in the Frequency Domain ... 194
7.5.4 Robustness and Relaxation .. 197
7.5.5 Non-monotonic Gradient-Based Control and ε-Weighted Norms 198
7.5.6 A Steepest Descent Algorithm Using ε-Norms 203
7.6 Discussion, Comments and Further Generalizations 203
7.6.1 Bringing the Ideas Together? ... 204
7.6.2 Factors Influencing Achievable Performance .. 206
7.6.3 Notes on Continuous State Space Systems ... 207
9.4.4 Robustness and the Inverse Algorithm .. 274
9.4.5 Alternatives? ... 275
9.4.6 \(Q, R\) and Dyadic Expansions ... 276

10 NOILC: Natural Extensions ... 277
10.1 Filtering Using Input and Error Weighting 277
10.2 Multi-rate Sampled Discrete Time Systems 279
10.3 Initial Conditions as Control Signals .. 280
10.4 Problems with Several Objectives .. 284
10.5 Intermediate Point Problems ... 286
 10.5.1 Continuous Time Systems:
 An Intermediate Point Problem ... 286
 10.5.2 Discrete Time Systems: An Intermediate
 Point Problem .. 290
 10.5.3 IPNOILC: Additional Issues and Robustness 290
10.6 Multi-task NOILC ... 293
 10.6.1 Continuous State Space Systems .. 294
 10.6.2 Adding Initial Conditions as Controls 299
 10.6.3 Discrete State Space Systems .. 300
10.7 Multi-models and Predictive NOILC ... 301
 10.7.1 Predictive NOILC—General Theory
 and a Link to Inversion .. 301
 10.7.2 A Multi-model Representation ... 304
 10.7.3 The Case of Linear, State Space Models 305
 10.7.4 Convergence and Other Algorithm Properties 308
 10.7.5 The Special Cases of \(M = 2\) and \(M = \infty\) 313
 10.7.6 A Note on Robustness of Feedforward
 Predictive NOILC ... 315
10.8 Discussion and Further Reading ... 319

11 Iteration and Auxiliary Optimization ... 323
11.1 Models with Auxiliary Variables and Problem
 Formulation ... 323
11.2 A Right Inverse Model Solution .. 325
11.3 Solutions Using Switching Algorithms .. 327
 11.3.1 Switching Algorithm Construction ... 327
 11.3.2 Properties of the Switching Algorithm 328
 11.3.3 Characterization of Convergence Rates 331
 11.3.4 Decoupling Minimum Energy Representations
 from NOILC .. 333
 11.3.5 Intermediate Point Tracking
 and the Choice \(G_1 = G\) ... 334
 11.3.6 Restructuring the NOILC Spectrum
 by Choosing \(G_1 = G_e\) ... 335
11.4 A Note on Robustness of Switching Algorithms 338
11.5 The Switching Algorithm When G_rG^* Is Invertible 341
11.6 Discussion and Further Reading ... 344

12 Iteration as Successive Projection .. 347
12.1 Convergence Versus Proximity .. 347
12.2 Successive Projection and Proximity Algorithms 349
12.3 Iterative Control with Constraints ... 354
 12.3.1 NOLC with Input Constraints .. 355
 12.3.2 General Analysis .. 358
 12.3.3 Intermediate Point Control with Input and Output Constraints 362
 12.3.4 Iterative Control to Satisfy Auxiliary Variable Bounds 364
 12.3.5 An Overview and Summary ... 366
12.4 “Iteration Management” by Operator Intervention 367
12.5 What Happens If S_1 and S_2 Do Not Intersect? 370
12.6 Discussion and Further Reading ... 373

13 Acceleration and Successive Projection 377
13.1 Replacing Plant Iterations by Off-Line Iterations 378
13.2 Accelerating Algorithms Using Extrapolation 378
 13.2.1 Successive Projection and Extrapolation Algorithms 379
 13.2.2 NOLC: Acceleration Using Extrapolation 381
13.3 A Notch Algorithm Using Parameterized Sets 383
 13.3.1 Creating a Spectral Notch: Computation and Properties 383
 13.3.2 The Notch Algorithm and Iterative Control Using Successive Projection ... 389
 13.3.3 A Notch Algorithm for Discrete State Space Systems 393
 13.3.4 Robustness of the Notch Algorithm in Feedforward Form 396
13.4 Discussion and Further Reading ... 401

14 Parameter Optimal Iterative Control ... 403
14.1 Parameterizations and Norm Optimal Iteration 403
14.2 Parameter Optimal Control: The Single Parameter Case 408
 14.2.1 Alternative Objective Functions 408
 14.2.2 Problem Definition and Convergence Characterization 410
 14.2.3 Convergence Properties: Dependence on Parameters 413
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.2.4</td>
<td>Choosing the Compensator.</td>
</tr>
<tr>
<td>14.2.5</td>
<td>Computing $tr[\Gamma_0^*\Gamma_0]$: Discrete State Space Systems</td>
</tr>
<tr>
<td>14.2.6</td>
<td>Choosing Parameters in $J(\beta)$</td>
</tr>
<tr>
<td>14.2.7</td>
<td>Iteration Dynamics</td>
</tr>
<tr>
<td>14.2.8</td>
<td>Plateauing/Flatlining Phenomena.</td>
</tr>
<tr>
<td>14.2.9</td>
<td>Switching Algorithms</td>
</tr>
<tr>
<td>14.3</td>
<td>Robustness of POILC: The Single Parameter Case</td>
</tr>
<tr>
<td>14.3.1</td>
<td>Robustness Using the Right Inverse</td>
</tr>
<tr>
<td>14.3.2</td>
<td>Robustness: A More General Case</td>
</tr>
<tr>
<td>14.4</td>
<td>Multi-Parameter Learning Control</td>
</tr>
<tr>
<td>14.4.1</td>
<td>The Form of the Parameterization</td>
</tr>
<tr>
<td>14.4.2</td>
<td>Alternative Forms for Ω_Γ and the Objective Function</td>
</tr>
<tr>
<td>14.4.3</td>
<td>The Multi-parameter POILC Algorithm</td>
</tr>
<tr>
<td>14.4.4</td>
<td>Choice of Multi-parameter Parameterization</td>
</tr>
<tr>
<td>14.5</td>
<td>Discussion and Further Reading</td>
</tr>
<tr>
<td>14.5.1</td>
<td>Chapter Overview</td>
</tr>
<tr>
<td>14.5.2</td>
<td>High Order POILC: A Brief Summary</td>
</tr>
</tbody>
</table>

References: |

Index: 451
Iterative Learning Control
An Optimization Paradigm
Owens, D.H.
2016, XXVIII, 456 p., Hardcover