# Contents

1 **Introduction—What Is this Guide About?** ............................................. 1  
  1.1 Introduction................................................................. 1  
  1.2 Motivation for Writing this Guide ........................................... 2  
  1.3 MTCS Course ................................................................. 3  
    1.3.1 MTCS Course Overview ............................................... 3  
    1.3.2 Course Population ................................................... 5  
    1.3.3 Course Objectives ................................................... 6  
    1.3.4 Recommended Teaching Methods Used  
         in the MTCS Course .................................................. 6  
  1.4 The Structure of the Guide to Teaching Computer Science .......... 7  
    1.4.1 Guide Structure and Organization .................................. 7  
    1.4.2 The Content of the Guide Chapters .................................. 8  
  1.5 How to Use the Guide? ..................................................... 11  
    1.5.1 Instructors of the MTCS Course ..................................... 11  
    1.5.2 The Prospective Computer Science Teachers  
         Enrolled in the MTCS Course ....................................... 13  
    1.5.3 Computer Science Instructors in the University ................. 13  
    1.5.4 Instructors of In-Service Teachers’ Professional  
         Development Programs .................................................. 13  
    1.5.5 High School Computer Science Teachers .......................... 13  
References ..................................................................................... 14  

2 **Active Learning and Active-Learning-Based Teaching Model** ........ 15  
  2.1 Introduction................................................................. 15  
  2.2 Active Learning.............................................................. 16  
  2.3 Why Active Learning Is Suitable for Implementation  
       in the MTCS Course? ......................................................... 17  
  2.4 Active-Learning-Based Teaching Model ................................. 19  
  2.5 The Role of the Instructor in the Active-Learning-Based  
       Teaching Model .............................................................. 20  
References ..................................................................................... 21
### 3 Overview of the Discipline of Computer Science

- 3.1 Introduction ................................................. 23
- 3.2 What Is Computer Science? ............................ 24
- 3.3 History of Computer Science ............................. 28
- 3.4 Computer Scientists .................................... 30
- 3.5 Social Issues of Computer Science ....................... 31
  - 3.5.1 Ethics in Computer Science Education ............. 32
  - 3.5.2 Diversity ........................................... 33
  - 3.5.3 Soft Skills ......................................... 35
- 3.6 Programming Paradigms .................................. 38
- 3.7 Computer Science Soft Ideas ............................ 42
  - 3.7.1 What Are Computer Science Soft Ideas? .......... 42
  - 3.7.2 Computer Science Soft Ideas in the MTCS Course .... 43
- 3.8 Computer Science as an Evolving Discipline .......... 49
- 3.9 Computer Science: An Integrated and Integral Part of Other Disciplines .................................... 51

References ......................................................... 52

### 4 Research in Computer Science Education

- 4.1 Introduction ............................................... 55
- 4.2 Research in Computer Science Education:
  - 4.2.1 Computer Science Education Research Categories 56
  - 4.2.2 Computer Science Education Research on Learning and Teaching Processes ...................... 58
  - 4.2.3 Resources for Computer Science Education Research ................................................. 61
- 4.3 MTCS Course Activities ................................. 62

References ......................................................... 70

### 5 Problem-Solving Strategies

- 5.1 Introduction ............................................... 75
- 5.2 Problem-Solving Processes ............................... 76
- 5.3 Problem Understanding .................................. 78
- 5.4 Solution Design .......................................... 79
  - 5.4.1 Defining the Problem Variables .................... 79
  - 5.4.2 Stepwise Refinement ................................ 82
  - 5.4.3 Algorithmic Patterns ................................ 84
- 5.5 Debugging .................................................. 86
- 5.6 Reflection ................................................... 89

References ......................................................... 92

### 6 Learners’ Alternative Conceptions

- 6.1 Introduction ............................................... 95
- 6.2 Pedagogical Tools for Dealing with Alternative Conceptions ............................................. 97

References ......................................................... 104
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>7 Teaching Methods in Computer Science Education</strong></td>
<td>105</td>
</tr>
<tr>
<td>7.1 Introduction</td>
<td>105</td>
</tr>
<tr>
<td>7.2 Pedagogical Tools</td>
<td>106</td>
</tr>
<tr>
<td>7.2.1 Pedagogical Games</td>
<td>106</td>
</tr>
<tr>
<td>7.2.2 The CS-Unplugged Approach</td>
<td>110</td>
</tr>
<tr>
<td>7.2.3 Rich Tasks</td>
<td>111</td>
</tr>
<tr>
<td>7.2.4 Concept Maps</td>
<td>116</td>
</tr>
<tr>
<td>7.2.5 Classification of Objects and Phenomena from Life</td>
<td>120</td>
</tr>
<tr>
<td>7.2.6 Metaphors</td>
<td>121</td>
</tr>
<tr>
<td>7.3 Different Forms of Class Organization</td>
<td>124</td>
</tr>
<tr>
<td>7.4 Mentoring Software Project Development</td>
<td>129</td>
</tr>
<tr>
<td>References</td>
<td>134</td>
</tr>
<tr>
<td><strong>8 Lab-Based Teaching</strong></td>
<td>137</td>
</tr>
<tr>
<td>8.1 Introduction</td>
<td>137</td>
</tr>
<tr>
<td>8.2 What Is a Computer Lab?</td>
<td>139</td>
</tr>
<tr>
<td>8.3 Lab-First Approach</td>
<td>143</td>
</tr>
<tr>
<td>8.4 Visualization and Animation</td>
<td>149</td>
</tr>
<tr>
<td>8.5 Using the Internet in the Teaching of Computer Science</td>
<td>158</td>
</tr>
<tr>
<td>References</td>
<td>160</td>
</tr>
<tr>
<td><strong>9 Types of Questions in Computer Science Education</strong></td>
<td>163</td>
</tr>
<tr>
<td>9.1 Introduction</td>
<td>163</td>
</tr>
<tr>
<td>9.2 Types of Questions</td>
<td>165</td>
</tr>
<tr>
<td>9.2.1 Type1. Development of a Solution</td>
<td>166</td>
</tr>
<tr>
<td>9.2.2 Type2. Development a Solution That Uses a Given Module</td>
<td>166</td>
</tr>
<tr>
<td>9.2.3 Type3. Tracing a Given Solution</td>
<td>167</td>
</tr>
<tr>
<td>9.2.4 Type4. Analysis of Code Execution</td>
<td>167</td>
</tr>
<tr>
<td>9.2.5 Type5. Finding the Purpose of a Given Solution</td>
<td>168</td>
</tr>
<tr>
<td>9.2.6 Type6. Examination of the Correctness of a Given Solution</td>
<td>168</td>
</tr>
<tr>
<td>9.2.7 Type7. Completion of a Given Solution</td>
<td>169</td>
</tr>
<tr>
<td>9.2.8 Type8. Instruction Manipulations</td>
<td>170</td>
</tr>
<tr>
<td>9.2.9 Type9. Efficiency Estimation</td>
<td>172</td>
</tr>
<tr>
<td>9.2.10 Type10. Question Design</td>
<td>172</td>
</tr>
<tr>
<td>9.2.11 Type11. Programming Style Questions</td>
<td>173</td>
</tr>
<tr>
<td>9.2.12 Type12. Transformation of a Solution</td>
<td>173</td>
</tr>
<tr>
<td>9.2.13 Combining Several Types of Questions</td>
<td>174</td>
</tr>
<tr>
<td>9.3 Problem-Solving Questions</td>
<td>176</td>
</tr>
<tr>
<td>9.4 Kinds of Questions</td>
<td>178</td>
</tr>
<tr>
<td>9.4.1 Story Questions</td>
<td>178</td>
</tr>
<tr>
<td>9.4.2 Closed Questions</td>
<td>179</td>
</tr>
<tr>
<td>9.4.3 Unsolvable Questions</td>
<td>181</td>
</tr>
</tbody>
</table>
9.5 Assimilation of the Types of Questions to Different Computer Science Contents ........................................ 181
9.6 Question Preparation .......................................................... 182
References ........................................................................... 185

10 Assessment ............................................................ 187
10.1 Introduction ............................................................... 187
10.2 Tests ........................................................................ 191
10.3 Project Assessment ....................................................... 195
  10.3.1 Individual Projects ................................................ 196
  10.3.2 Team Projects ..................................................... 196
10.4 Portfolio .................................................................... 200
10.5 The Evaluation of the Students in the MTCS Course ........ 203
References ........................................................................... 204

11 Teaching Planning .................................................. 207
11.1 Introduction ............................................................... 207
11.2 Top-Down Approach for Teaching Planning ................. 208
  11.2.1 Broad Perspective: Planning the Entire Curriculum .... 209
  11.2.2 Intermediate Level Perspective:
       Planning the Teaching of a Study Unit ....................... 209
  11.2.3 Local Level Perspective: Planning a Lesson ............... 210
  11.2.4 Building Concept Understanding in a Spiral
       Gradient Manner .......................................................... 210
11.3 Illustration: Teaching One-Dimensional Array ............ 211
  11.3.1 Planning the Teaching of a Study Unit about
       One-Dimensional Array ................................................ 212
  11.3.2 Planning the Teaching of the First Lesson
       about One-Dimensional Array ........................................ 213
  11.3.3 Illustration Summary ............................................... 216
References ........................................................................... 219

12 Integrated View at the MTCS Course Organization:
The Case of Recursion ...................................................... 221
12.1 Introduction ............................................................... 221
12.2 Classification of Everyday Objects and Phenomena:
The Case of Recursion ...................................................... 223
12.3 Leap of Faith ............................................................. 225
12.4 Models of the Recursive Process .................................. 228
  12.4.1 The Little People Model ......................................... 229
  12.4.2 The “Top-Down Frames” Model ............................. 232
12.5 Research on Learning and Teaching Recursion ............. 233
12.6 How Does Recursion Sound? ....................................... 236
12.7 Assessment .................................................. 238
12.8 Additional Activities ........................................ 239
References .......................................................... 241

13 Getting Experience in Computer Science Education .......... 243
13.1 Introduction .................................................. 243
13.2 The Practicum in the High School ............................. 244
  13.2.1 General Description ..................................... 244
  13.2.2 The Practicum as a Bridge Between Theory and Its Application ........................................... 245
13.3 Computer Science Teacher Training Within the Professional Development School Collaboration Framework ........ 252
  13.3.1 General Description and Main Objectives ................. 252
  13.3.2 Training Computer Science Prospective Teachers Within the PDS .......................................... 253
  13.3.3 The Practice of Teaching Within the PDS ................. 255
13.4 A Tutoring Model for Guiding Problems-Solving Processes .... 256
  13.4.1 The Implementation of the Tutoring Model ................ 256
  13.4.2 The Contribution of the Mentoring Model to Prospective Computer Science Teachers Teaching Experience .............................................................................. 258
13.5 Practicum Versus Tutoring ...................................... 259
References .......................................................... 260

14 Design of Methods of Teaching Computer Science Courses ...... 263
14.1 Perspectives on the MTCS Course ................................ 263
14.2 Suggestions for MTCS Course Syllabi ............................ 265
  14.2.1 Course Structure ........................................... 265
  14.2.2 Course Syllabus .............................................. 265
References .......................................................... 268

15 High School Computer Science Teacher Preparation Programs ... 269
15.1 A Model for High School Computer Science Education .......... 269
  15.1.1 Background .................................................. 270
  15.1.2 The Model Components and Their Amalgamation .......... 270
  15.1.3 Connections Among the Model Components ............... 274
  15.1.4 Comments About the Model ................................ 276
15.2 Construction of a Computer Science Teacher Preparation Program—the ECSTPP Workshop .................. 276
  15.2.1 Rationale .................................................... 276
  15.2.2 Population .................................................. 276
  15.2.3 Objectives .................................................. 277
  15.2.4 Structure and Contents .................................... 277
  15.2.5 ECSTPP Workshop—Summary ............................. 279
15.3  Computer Science Teaching as an Additional Profession 279
15.3.1 Program Description and Rationale 280
15.3.2 The Computer Science Education Track of the Program 280
15.3.3 Computer Science Students’ Perspective and Contribution 281
References 282

16  Epilogue 285

Index 287
Guide to Teaching Computer Science
An Activity-Based Approach
Hazzan, O.; Lapidot, T.; Ragonis, N.
2014, XXIV, 296 p. 10 illus., Hardcover
ISBN: 978-1-4471-6629-0