Contents

Part I Introduction, Basic Concepts and Preliminaries

1 **Introduction** .. 3
 1.1 Basic Concepts .. 3
 1.2 Motivation .. 5
 1.2.1 Data-Driven and Model-Based FDI 5
 1.2.2 Fault-Tolerant Control and Lifetime Management .. 5
 1.2.3 Information Infrastructure 6
 1.3 Outline of the Contents 7
 1.4 Notes and References 9

References ... 10

2 **Case Study and Application Examples** 11
 2.1 Three-Tank System ... 11
 2.1.1 Process Dynamics and Its Description 11
 2.1.2 Description of Typical Faults 13
 2.1.3 Closed-Loop Dynamics 14
 2.2 Continuous Stirred Tank Heater 15
 2.2.1 Plant Dynamics and Its Description 15
 2.2.2 Faults Under Consideration 17
 2.3 An Industrial Benchmark: Tennessee Eastman Process 17
 2.3.1 Process Description and Simulation 17
 2.3.2 Simulated Faults in TEP 20
 2.4 Notes and references 21

References ... 21

3 **Basic Statistical Fault Detection Problems** 23
 3.1 Some Elementary Concepts 23
 3.1.1 A Simple Detection Problem and Its Intuitive
 Solution .. 23
 3.1.2 Elementary Concepts in Fault Detection 24
 3.1.3 Problem Formulations 26
 3.2 Some Elementary Methods and Algorithms 26
 3.2.1 The Intuitive Solution 26
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.2.2 T^2 Test Statistic</td>
<td>27</td>
</tr>
<tr>
<td>3.2.3 Likelihood Ratio and Generalized</td>
<td>28</td>
</tr>
<tr>
<td>3.2.4 Vector-Valued GLR</td>
<td>29</td>
</tr>
<tr>
<td>3.3 The Data-Driven Solutions of the Detection Problem</td>
<td>31</td>
</tr>
<tr>
<td>3.3.1 Fault Detection with a Sufficiently Large N</td>
<td>32</td>
</tr>
<tr>
<td>3.3.2 Fault Detection Using Hotelling’s T^2 Test Statistic</td>
<td>33</td>
</tr>
<tr>
<td>3.3.3 Fault Detection Using Q Statistic</td>
<td>35</td>
</tr>
<tr>
<td>3.4 Case Example: Fault Detection in Three-Tank System</td>
<td>36</td>
</tr>
<tr>
<td>3.4.1 System Setup and Simulation Parameters</td>
<td>36</td>
</tr>
<tr>
<td>3.4.2 Training Results and Threshold Setting</td>
<td>37</td>
</tr>
<tr>
<td>3.4.3 Fault Detection Results</td>
<td>39</td>
</tr>
<tr>
<td>3.5 Variations of the Essential Fault Detection Problem</td>
<td>44</td>
</tr>
<tr>
<td>3.5.1 Variation I</td>
<td>44</td>
</tr>
<tr>
<td>3.5.2 Variation II</td>
<td>45</td>
</tr>
<tr>
<td>3.6 Notes and References</td>
<td>46</td>
</tr>
<tr>
<td>References</td>
<td>47</td>
</tr>
<tr>
<td>4 Fault Detection in Processes with Deterministic Disturbances</td>
<td>49</td>
</tr>
<tr>
<td>4.1 Problem Formulations and Some Elementary Concepts</td>
<td>49</td>
</tr>
<tr>
<td>4.1.1 A Simple Detection Problem and Its Intuitive Solution</td>
<td>49</td>
</tr>
<tr>
<td>4.1.2 Some Essential Concepts</td>
<td>50</td>
</tr>
<tr>
<td>4.1.3 Problem Formulations</td>
<td>52</td>
</tr>
<tr>
<td>4.2 Some Elementary Methods and Algorithms</td>
<td>53</td>
</tr>
<tr>
<td>4.2.1 An Intuitive Strategy</td>
<td>53</td>
</tr>
<tr>
<td>4.2.2 An Alternative Solution</td>
<td>54</td>
</tr>
<tr>
<td>4.2.3 A Comparison Study</td>
<td>56</td>
</tr>
<tr>
<td>4.2.4 Unknown Input Estimation Based Detection Scheme</td>
<td>57</td>
</tr>
<tr>
<td>4.2.5 A General Solution</td>
<td>58</td>
</tr>
<tr>
<td>4.3 A Data-Driven Solution of the Fault Detection Problem</td>
<td>60</td>
</tr>
<tr>
<td>4.4 A Variation of the Essential Fault Detection Problem</td>
<td>62</td>
</tr>
<tr>
<td>4.5 Case Study</td>
<td>64</td>
</tr>
<tr>
<td>4.5.1 Case Study on Laboratory System CSTH</td>
<td>64</td>
</tr>
<tr>
<td>4.5.2 Case Study on Three-Tank System</td>
<td>67</td>
</tr>
<tr>
<td>4.6 Notes and References</td>
<td>68</td>
</tr>
<tr>
<td>References</td>
<td>70</td>
</tr>
</tbody>
</table>
Part II Application of Multivariate Analysis Methods to Fault Diagnosis in Static Processes

5 Application of Principal Component Analysis to Fault Diagnosis. .. 73
 5.1 The Basic Application Form of PCA to Fault Detection 73
 5.1.1 Algorithms .. 74
 5.1.2 Basic Ideas and Properties 75
 5.2 The Modified Form of SPE: Hawkin’s T^2_H Statistic 77
 5.3 Fault Sensitivity Analysis .. 78
 5.3.1 Sensitivity to the Off-set Faults 79
 5.3.2 Sensitivity to the Scaling Faults 80
 5.4 Multiple Statistical Indices and Combined Indices 81
 5.5 Dynamic PCA ... 84
 5.6 Fault Identification ... 84
 5.6.1 Identification of Off-set Faults 84
 5.6.2 Identification of Scaling Faults 85
 5.6.3 A Fault Identification Procedure 86
 5.7 Application to TEP .. 87
 5.7.1 Case Study on Fault Scenario 4 87
 5.7.2 Case Study Results for the Other Fault Scenarios 89
 5.7.3 Comparison of Multiple Indices with Combined Indices 90
 5.8 Notes and References ... 93
References .. 93

6 Application of Partial Least Squares Regression to Fault Diagnosis. 95
 6.1 Partial Least Squares Algorithms 95
 6.2 On the PLS Regression Algorithms 98
 6.2.1 Basic Ideas and Properties 98
 6.2.2 Application to Fault Detection and Process Monitoring 101
 6.3 Relations Between LS and PLS 103
 6.3.1 LS Estimation .. 103
 6.3.2 LS Interpretation of the PLS Regression Algorithm 105
 6.4 Remarks on PLS Based Fault Diagnosis 110
 6.5 Case Study on TEP .. 111
 6.5.1 Test Setup .. 111
 6.5.2 Offline Training .. 111
 6.5.3 Online Running ... 111
 6.6 Notes and References ... 116
References .. 116
Canonical Variate Analysis Based Process Monitoring and Fault Diagnosis

7.1 Introduction to CCA

7.2 CVA-Based System Identification

7.3 Applications to Process Monitoring and Fault Detection

7.3.1 Process Monitoring

7.3.2 Fault Detection Schemes

7.4 Case Study: Application to TEP

7.4.1 Test Setup and Training

7.4.2 Test Results and a Comparison Study

7.5 Notes and References

References

Part III Data-driven Design of Fault Diagnosis Systems for Dynamic Processes

8.1 Introduction

8.2 Preliminaries and Review of Model-Based FDI Schemes

8.2.1 System Models

8.2.2 Model-Based Residual Generation Schemes

8.3 I/O Data Models

8.4 Notes and References

References

9.1 Basic Concepts and Design Issues of Fault Diagnosis in Dynamic Processes

9.2 Data-Driven Design Schemes of Residual Generators

9.2.1 Scheme I

9.2.2 Scheme II

9.2.3 Scheme III

9.2.4 A Numerically Reliable Realization Algorithm

9.2.5 Comparison and Discussion

9.3 Test Statistics, Threshold Settings and Fault Detection

9.4 Fault Isolation and Identification Schemes

9.4.1 Problem Formulation

9.4.2 Fault Isolation Schemes

9.4.3 Fault Identification Schemes

9.5 Case Study: Fault Detection in Three-Tank System

9.5.1 System and Test Setup

9.5.2 Test Results

9.5.3 Handling of Ill-Conditioning Σ_{res}
10 Data-Driven Design of Observer-Based Fault Diagnosis Systems
10.1 Motivation and Problem Formulation
10.2 Parity Vectors Based Construction of Observer-Based Residual Generators
10.2.1 Generation of a Scalar Residual Signal
10.2.2 Generation of m-Dimensional Residual Vectors
10.2.3 Data-Driven Design of Kalman Filter Based Residual Generators
10.3 Fault Detection, Isolation and Identification
10.3.1 On Fault Detection
10.3.2 Fault Isolation Schemes
10.3.3 A Fault Identification Scheme
10.4 Observer-Based Process Monitoring
10.5 Case Study on CSTH
10.5.1 System Setup
10.5.2 Towards the Kalman Filter-Based Residual Generator
10.5.3 Towards the Generation of m-Dimensional Residual Vectors
10.6 Case Study on TEP
10.7 Remarks on the Application of the Data-Driven FDI Systems
10.8 Notes and References

Part IV Adaptive and Iterative Optimization Techniques for Data-driven Fault Diagnosis

11 Adaptive Fault Diagnosis Schemes
11.1 OI-based Recursive SVD Computation and Its Application
11.1.1 Problem Formulation
11.1.2 DPM: An Adaptive Algorithm
11.1.3 Applications to Fault Detection
11.2 An Adaptive SVD Algorithm and Its Applications
11.2.1 The Adaptive SVD Algorithm
11.2.2 Applications to Fault Detection
11.3 Adaptive SKR Based Residual Generation Method
11.3.1 Problem Formulation
11.3.2 The Adaptive Residual Generation Algorithm

References
11.3.3 Stability and Exponential Convergence 211
11.3.4 An Extension to the Adaptive State Observer 214
11.4 Case Studies ... 215
11.4.1 Application of Adaptive SVD Based RPCA Scheme to Three-Tank System . 215
11.4.2 Application of the Adaptive Observer-Based Residual Generation Scheme to the Three-Tank System ... 218
11.5 Notes and References ... 221
References .. 222

12 Iterative Optimization of Process Monitoring and Fault Detection Systems .. 223
12.1 Iterative Generalized Least Squares Estimation 223
12.2 Iterative RLS Estimation ... 225
12.2.1 The Basic Idea and Approach 225
12.2.2 Algorithm, its Realization and Implementation . 227
12.2.3 An Example ... 227
12.3 Iterative Optimization of Kalman Filters 231
12.3.1 The Idea and Scheme .. 231
12.3.2 Algorithm and Implementation 235
12.3.3 An Example ... 236
12.4 Case Study ... 237
12.4.1 Case 1: Σ_v is Unknown While Σ_w is Given . 239
12.4.2 Case 2: Σ_w is Unknown While Σ_v is Given . . 240
12.5 Notes and References ... 241
References .. 243

Part V Data-driven Design and Lifetime Management of Fault-tolerant Control Systems

13 Fault-Tolerant Control Architecture and Design Issues 247
13.1 Preliminaries ... 247
13.1.1 Image Representation and State Feedback Control . . 248
13.1.2 Parametrization of Stabilizing Controllers 249
13.2 Fault-Tolerant Control Architecture and Relevant Issues . 250
13.2.1 An Observer-Based Fault-Tolerant Control Architecture ... 250
13.2.2 Design and Optimal Settings 252
13.2.3 A Residual-Based Fault-Tolerant and Lifetime Management Structure .. 255
13.2.4 System Dynamics and Design Parameters 257
13.3 Notes and References ... 261
References .. 262
Data-driven Design of Fault Diagnosis and Fault-tolerant Control Systems
Ding, S.X.
2014, XX, 300 p. 106 illus., 101 illus. in color., Hardcover
ISBN: 978-1-4471-6409-8