Chapter 2
Case Study and Application Examples

In this chapter, three application examples are introduced, which will be applied to illustrate the major process monitoring, diagnosis and control schemes presented and studied in this book. The first two are real laboratory control systems, which are widely used both in the model-based and data-driven fault diagnosis research. The third one is a benchmark process that is mainly applied for the test and demonstration of data-driven control and monitoring schemes. The objective of introducing these application examples in the first part of this book, immediately after Introduction, is to provide the reader with the useful application background and understandings of some basic technical concepts in the process monitoring and fault diagnosis field.

2.1 Three-Tank System

A three-tank system, as sketched in Fig. 2.1, has typical characteristics of tanks, pipelines and pumps used in chemical industry and thus often serves as a benchmark process in laboratories for process control. The model and the parameters of the three-tank system introduced here are from the laboratory setup DTS200.

2.1.1 Process Dynamics and Its Description

Applying the incoming and outgoing mass flows under consideration of Torricelli’s law, the dynamics of DTS200 is modeled by

\[A\dot{h}_1 = Q_1 - Q_{13}, \quad A\dot{h}_2 = Q_2 + Q_{32} - Q_{20}, \quad A\dot{h}_3 = Q_{13} - Q_{32} \]

\[Q_{13} = a_1s_{13}\text{sgn}(h_1 - h_3)\sqrt{2gh_1 - h_3} \]

\[Q_{32} = a_3s_{23}\text{sgn}(h_3 - h_2)\sqrt{2gh_3 - h_2}, \quad Q_{20} = a_2s_0\sqrt{2gh_2} \]
where

- Q_1, Q_2 are incoming mass flow (cm3/s)
- Q_{ij} is the mass flow (cm3/s) from the ith tank to the jth tank
- $h_i(t), i = 1, 2, 3,$ are the water level (cm) in each tank and measurement variables
- $s_{13} = s_{23} = s_0 = s_n.$

The parameters are given in Table 2.1.

In most of our studies, we deal with linear systems. The linear form of the above model can be achieved by a linearization at an operating point as follows:

$$\dot{x} = Ax + Bu, \ y = Cx \tag{2.1}$$

$$x = \begin{bmatrix} h_1 - h_{1,o} \\ h_2 - h_{2,o} \\ h_3 - h_{3,o} \end{bmatrix}, \ u = \begin{bmatrix} Q_1 - Q_{1,o} \\ Q_2 - Q_{2,o} \end{bmatrix}, \ Q_o = \begin{bmatrix} Q_{1,o} \\ Q_{2,o} \end{bmatrix}$$

$$A = \left. \frac{\partial f}{\partial h} \right|_{h=h_o}, \ B = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}, \ C = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

where $h_{i,o}, i = 1, 2, 3,$ $Q_{1,o}, Q_{2,o}$ denote the operating point under consideration and

$$f(h) = \begin{bmatrix} -a_1 s_{13} \text{sgn}(h_1 - h_3) \sqrt{2g|h_1 - h_3|} \\ a_3 s_{23} \text{sgn}(h_3 - h_2) \sqrt{2g|h_3 - h_2|} - a_2 s_0 \sqrt{2gh_2} \\ a_1 s_{13} \text{sgn}(h_1 - h_3) \sqrt{2g|h_1 - h_3|} - a_3 s_{23} \text{sgn}(h_3 - h_2) \sqrt{2gh_3 - h_2} \end{bmatrix}, \ h = \begin{bmatrix} h_1 \\ h_2 \\ h_3 \end{bmatrix}. $$

![Fig. 2.1 DTS200 setup](image-url)
2.1 Three-Tank System

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Symbol</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cross section area of tanks</td>
<td>A</td>
<td>154</td>
<td>cm2</td>
</tr>
<tr>
<td>Cross section area of pipes</td>
<td>s_n</td>
<td>0.5</td>
<td>cm2</td>
</tr>
<tr>
<td>Max. height of tanks</td>
<td>H_{max}</td>
<td>62</td>
<td>cm</td>
</tr>
<tr>
<td>Max. flow rate of pump 1</td>
<td>$Q_{1_{\text{max}}}$</td>
<td>100</td>
<td>cm3/s</td>
</tr>
<tr>
<td>Max. flow rate of pump 2</td>
<td>$Q_{2_{\text{max}}}$</td>
<td>100</td>
<td>cm3/s</td>
</tr>
<tr>
<td>Coeff. of flow for pipe 1</td>
<td>a_1</td>
<td>0.46</td>
<td></td>
</tr>
<tr>
<td>Coeff. of flow for pipe 2</td>
<td>a_2</td>
<td>0.60</td>
<td></td>
</tr>
<tr>
<td>Coeff. of flow for pipe 3</td>
<td>a_3</td>
<td>0.45</td>
<td></td>
</tr>
</tbody>
</table>

In the steady state at the operating point, it holds

$$
A \begin{bmatrix} h_{1,o} \\ h_{2,o} \\ h_{3,o} \end{bmatrix} + B \begin{bmatrix} Q_{1,o} \\ Q_{2,o} \end{bmatrix} = 0 \iff \begin{bmatrix} A & B \end{bmatrix} \begin{bmatrix} h_o \\ Q_o \end{bmatrix} = 0. \tag{2.2}
$$

It is remarkable that in practice fault diagnosis is often realized as the process runs in the steady state. For this reason, multivariate analysis technique is widely applied to detect faults in the process under consideration.

In our study on the data-driven design of fault diagnosis and fault-tolerant control systems, data will be typically collected at or around an operating point, both in the steady and dynamic operating modes. Serving for the study on adaptive technique, we also consider the case with changes in operating points. It is evident that a linearization at different operating points will result in linear models with different system parameters. System adaptive techniques are powerful tools to deal with such situations.

2.1.2 Description of Typical Faults

Three types of faults are often considered in a benchmark study:

- component faults: leaks in the three tanks, which can be described as additional mass flows out of the tanks,

$$
\theta_{A_1}\sqrt{2gh_1}, \theta_{A_2}\sqrt{2gh_2}, \theta_{A_3}\sqrt{2gh_3}
$$

where $\theta_{A_1}, \theta_{A_2}$ and θ_{A_3} are unknown and depend on the size of the leaks

- component faults: pluggings between two tanks and in the letout pipe by tank 2, which cause changes in Q_{13}, Q_{32} and Q_{20} and thus can be modeled by
\[\theta_{A_4} a_1 s_1 \text{sgn}(h_1 - h_3) \sqrt{2g|h_1 - h_3|}, \theta_{A_4} a_3 s_3 \text{sgn}(h_3 - h_2) \sqrt{2g|h_3 - h_2|}, \]
\[\theta_{A_5} a_2 s_0 \sqrt{2gh_2} \]

where \(\theta_{A_4}, \theta_{A_5}, \theta_{A_6} \in [-1, 0] \) and are unknown

- sensor faults: three additive faults in the three sensors, denoted by \(f_1, f_2 \) and \(f_3 \)
- actuator faults: faults in pumps, denoted by \(f_4 \) and \(f_5 \).

The influences of these faults can be integrated into the models introduced above. The linear form is given as follows

\[\dot{x} = (A + \Delta AF) x + Bu + Ef_f, y = Cx + Ff_f \quad (2.3) \]

\[\Delta AF = \sum_{i=1}^{6} A_i \theta_{A_i}, f = \begin{bmatrix} f_1 \\ \vdots \\ f_5 \end{bmatrix}, E_f = \begin{bmatrix} 0 & B \end{bmatrix} \in \mathbb{R}^{3 \times 5} \]
\[F_f = \begin{bmatrix} I_{3 \times 3} & 0 \end{bmatrix} \in \mathbb{R}^{3 \times 5}. \]

Those faults modeled by an additive term in the state space representation, e.g. \(E_f f \), are called additive faults, while the ones like \(\theta_{A_i} \) are called multiplicative faults, which may cause changes in the system eigen-dynamics.

2.1.3 Closed-Loop Dynamics

In DTS200, a nonlinear controller is implemented which leads to a full decoupling of the three tank system into

- two linear sub-systems of the first order and
- a nonlinear sub-system of the first order.

This controller can be schematically described as follows:

\[u_1 = Q_1 = Q_{13} + A (a_{11} h_1 + v_1 (w_1 - h_1)) \]
\[u_2 = Q_2 = Q_{20} - Q_{32} + A (a_{22} h_2 + v_2 (w_2 - h_2)) \]

where \(a_{11}, a_{22} < 0, v_1, v_2 \) represent two prefilters and \(w_1, w_2 \) are reference signals.

The nominal (fault-free) closed-loop dynamics is described by

\[\begin{bmatrix} \dot{h}_1 \\ \dot{h}_2 \\ \dot{h}_3 \end{bmatrix} = \begin{bmatrix} (a_{11} - v_1) h_1 \\ (a_{22} - v_2) h_2 \\ a_1 s_1 \text{sgn}(h_1 - h_3) \sqrt{2g|h_1 - h_3|} - a_3 s_3 \text{sgn}(h_3 - h_2) \sqrt{2g|h_3 - h_2|} \end{bmatrix} \]
\[+ \begin{bmatrix} v_1 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} w_1 \\ w_2 \end{bmatrix}. \]
In the steady state, we have

\[
\begin{bmatrix}
(a_{11} - v_1) h_1 \\
(a_{22} - v_2) h_2 \\
\frac{a_1 s_{13} \text{sgn}(h_1 - h_3) \sqrt{2g|h_1 - h_3| - a_3 s_{23} \text{sgn}(h_3 - h_2) \sqrt{2g|h_3 - h_2|}}}{A} \\
\end{bmatrix} +
\begin{bmatrix}
v_1 & 0 \\
0 & v_2 \\
0 & 0 \\
\end{bmatrix}
\begin{bmatrix}
w_1 \\
w_2 \\
\end{bmatrix} = 0.
\]

(2.7)

It should be mentioned that detecting a fault in the closed-loop configuration is a challenging topic, in particular in the data-driven framework.

2.2 Continuous Stirred Tank Heater

In this section, we briefly introduce a linear model of the laboratory setup continuous stirred tank heater (CSTH), which is a typical control system often met in process industry.

2.2.1 Plant Dynamics and Its Description

Figure 2.2 gives a schematic description of the laboratory setup CSTH, where water is used as the product and reactant. Without considering the dynamic behaviors of
the heat exchanger, the system dynamics can be represented by the tank volume V_T, the enthalpy in the tank H_T and the water temperature in the heating jacket T_{hj} and modeled by

$$
\begin{bmatrix}
\dot{V}_T \\
\dot{H}_T \\
\dot{T}_{hj}
\end{bmatrix} =
\begin{bmatrix}
\dot{V}_{in} - \dot{V}_{out} \\
\dot{H}_{hjT} + \dot{H}_{in} - \dot{H}_{out} \\
\frac{1}{m_{hj}c_p} (P_h - \dot{H}_{hjT})
\end{bmatrix}.
$$

(2.8)

The physical meanings of the process variables and parameters used above and in the sequel are listed in Table 2.2. Let

$$
\dot{V}_{in} - \dot{V}_{out} := u_1, \quad P_h := u_2
$$

be the input variables. Considering that

$$
\dot{H}_{hjT} = f \left(T_{hj} - T_T\right), \quad \dot{H}_{in} = \dot{m}_{in}c_pT_{in}, \quad \dot{H}_{out} = \dot{m}_{out}c_pT_{out} = H_T \frac{\dot{V}_{out}}{V_T}
$$

we have

$$
\begin{bmatrix}
\dot{V}_T \\
\dot{H}_T \\
\dot{T}_{hj}
\end{bmatrix} =
\begin{bmatrix}
0 \\
\frac{\dot{V}_{in} - \dot{V}_{out}}{\dot{H}_{hjT}} + \dot{m}_{in}c_pT_{in} - H_T \frac{\dot{V}_{out}}{V_T} \\
\frac{-f \left(T_{hj} - \frac{H_T}{m_{hj}c_p}\right)}{m_{hj}c_p} - f \left(T_{hj} - \frac{H_T}{m_{hj}c_p}\right)
\end{bmatrix} +
\begin{bmatrix}
1 & 0 \\
0 & 0 \\
0 & \frac{m_{hj}c_p}{m_{hj}c_p}
\end{bmatrix}
\begin{bmatrix}
u_1 \\
u_2
\end{bmatrix}
$$

(2.9)
with f denoting some nonlinear function. In CSTH, the water level h_T, the temperature of the water in the tank T_T as well as T_{hj} are measurement variables which satisfy

$$
\begin{bmatrix}
 h_T \\
 T_T \\
 T_{hj}
\end{bmatrix}
= \begin{bmatrix}
 V_T \\
 \frac{A_{eff}}{H_T} \\
 \frac{m_T}{c_p} \\
 T_{hj}
\end{bmatrix}.
$$

2.2.2 Faults Under Consideration

Different kinds of faults can be considered in the benchmark study, for instance

- leakage in the tank A leakage will cause a change in the first equation in (2.9) as follows

$$
\dot{V}_T = \dot{V}_{in} - \dot{V}_{out} - \theta_{\text{leak}} \sqrt{2gh_T} = u_1 - \theta_A \sqrt{2gh_T} = u_1 - \theta_A \sqrt{A_{eff}} \tag{2.10}
$$

where θ_A is a coefficient proportional to the size of the leakage. It is evident that θ_A is a multiplicative component fault.

- an additive actuator fault in u_1

- additive faults in the temperate enmeshments.

2.3 An Industrial Benchmark: Tennessee Eastman Process

Tennessee Eastman process (TEP) is a realistic simulation of a chemical process that was created by Eastman chemical company in open loop operation. Since its publication by Downs and Fogel in 1993, TEP is widely accepted as a benchmark for control and monitoring studies and used by the control and fault diagnosis communities as a source of data for comparison studies of various control, monitoring and fault diagnosis schemes and methods. In this book, TEP mainly serves for illustrating and demonstrating the data-driven process monitoring and fault diagnosis schemes.

2.3.1 Process Description and Simulation

Figure 2.3 shows the flow diagram of the process with five major units, namely, reactor, condenser, compressor, separator and stripper. The process has two products from four reactants. Additionally, an inert and a by-product are also produced making
Table 2.3 Process manipulated variables

<table>
<thead>
<tr>
<th>Variable name</th>
<th>Number</th>
<th>Base value (%)</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>D feed flow</td>
<td>XMV(1)</td>
<td>63.053</td>
<td>kgh⁻¹</td>
</tr>
<tr>
<td>E feed flow</td>
<td>XMV(2)</td>
<td>53.980</td>
<td>kgh⁻¹</td>
</tr>
<tr>
<td>A feed flow</td>
<td>XMV(3)</td>
<td>24.644</td>
<td>kscmh</td>
</tr>
<tr>
<td>A and C feed flow</td>
<td>XMV(4)</td>
<td>61.302</td>
<td>kscmh</td>
</tr>
<tr>
<td>Compressor recycle valve</td>
<td>XMV(5)</td>
<td>22.210</td>
<td>%</td>
</tr>
<tr>
<td>Purge valve</td>
<td>XMV(6)</td>
<td>40.064</td>
<td>%</td>
</tr>
<tr>
<td>Separator pot liquid flow</td>
<td>XMV(7)</td>
<td>38.100</td>
<td>m³h⁻¹</td>
</tr>
<tr>
<td>Stripper liquid product flow</td>
<td>XMV(8)</td>
<td>46.534</td>
<td>m³h⁻¹</td>
</tr>
<tr>
<td>Stripper steam valve</td>
<td>XMV(9)</td>
<td>47.446</td>
<td>%</td>
</tr>
<tr>
<td>Reactor cooling water flow</td>
<td>XMV(10)</td>
<td>41.106</td>
<td>m³h⁻¹</td>
</tr>
<tr>
<td>Condenser cooling water flow</td>
<td>XMV(11)</td>
<td>18.114</td>
<td>m³h⁻¹</td>
</tr>
</tbody>
</table>

Fig. 2.3 The Tennessee Eastman process

a total of 8 components denoted as A, B, C, D, E, F, G and H. TEP allows total 52 measurements, out of which 11 are manipulated variables and 41 are process variables, as listed respectively in Tables 2.3 and 2.4.

The first TEP simulation was programmed in the FORTRAN code. In the past two decades, different program versions have been developed. For our study in this book, the Simulink code provided by Ricker is used, which is available at the website http://depts.washington.edu/control/LARRY/TE/download.html and can be downloaded. This Simulink simulator allows an easy setting and generation of the operation modes, measurement noises, sampling time and magnitudes of
<table>
<thead>
<tr>
<th>Block name</th>
<th>Variable name</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input feed</td>
<td>A feed (stream 1)</td>
<td>XMEAS(1)</td>
</tr>
<tr>
<td></td>
<td>D feed (stream 2)</td>
<td>XMEAS(2)</td>
</tr>
<tr>
<td></td>
<td>E feed (stream 3)</td>
<td>XMEAS(3)</td>
</tr>
<tr>
<td></td>
<td>A and C feed</td>
<td>XMEAS(4)</td>
</tr>
<tr>
<td>Reactor</td>
<td>Reactor feed rate</td>
<td>XMEAS(6)</td>
</tr>
<tr>
<td></td>
<td>Reactor pressure</td>
<td>XMEAS(7)</td>
</tr>
<tr>
<td></td>
<td>Reactor level</td>
<td>XMEAS(8)</td>
</tr>
<tr>
<td></td>
<td>Reactor temperature</td>
<td>XMEAS(9)</td>
</tr>
<tr>
<td>Separator</td>
<td>Separator temperature</td>
<td>XMEAS(11)</td>
</tr>
<tr>
<td></td>
<td>Separator level</td>
<td>XMEAS(12)</td>
</tr>
<tr>
<td></td>
<td>Separator pressure</td>
<td>XMEAS(13)</td>
</tr>
<tr>
<td></td>
<td>Separator underflow</td>
<td>XMEAS(14)</td>
</tr>
<tr>
<td>Stripper</td>
<td>Stripper level</td>
<td>XMEAS(15)</td>
</tr>
<tr>
<td></td>
<td>Stripper pressure</td>
<td>XMEAS(16)</td>
</tr>
<tr>
<td></td>
<td>Stripper underflow</td>
<td>XMEAS(17)</td>
</tr>
<tr>
<td></td>
<td>Stripper temperature</td>
<td>XMEAS(18)</td>
</tr>
<tr>
<td></td>
<td>Stripper steam flow</td>
<td>XMEAS(19)</td>
</tr>
<tr>
<td>Miscellaneous</td>
<td>Recycle flow</td>
<td>XMEAS(5)</td>
</tr>
<tr>
<td></td>
<td>Purge rate</td>
<td>XMEAS(10)</td>
</tr>
<tr>
<td></td>
<td>Compressor work</td>
<td>XMEAS(20)</td>
</tr>
<tr>
<td></td>
<td>Reactor water temperature</td>
<td>XMEAS(21)</td>
</tr>
<tr>
<td></td>
<td>Separator water temperature</td>
<td>XMEAS(22)</td>
</tr>
<tr>
<td>Reactor feed analysis</td>
<td>Component A</td>
<td>XMEAS(23)</td>
</tr>
<tr>
<td></td>
<td>Component B</td>
<td>XMEAS(24)</td>
</tr>
<tr>
<td></td>
<td>Component C</td>
<td>XMEAS(25)</td>
</tr>
<tr>
<td></td>
<td>Component D</td>
<td>XMEAS(26)</td>
</tr>
<tr>
<td></td>
<td>Component E</td>
<td>XMEAS(27)</td>
</tr>
<tr>
<td></td>
<td>Component F</td>
<td>XMEAS(28)</td>
</tr>
<tr>
<td>Purge gas analysis</td>
<td>Component A</td>
<td>XMEAS(29)</td>
</tr>
<tr>
<td></td>
<td>Component B</td>
<td>XMEAS(30)</td>
</tr>
<tr>
<td></td>
<td>Component C</td>
<td>XMEAS(31)</td>
</tr>
<tr>
<td></td>
<td>Component D</td>
<td>XMEAS(32)</td>
</tr>
<tr>
<td></td>
<td>Component E</td>
<td>XMEAS(33)</td>
</tr>
<tr>
<td></td>
<td>Component F</td>
<td>XMEAS(34)</td>
</tr>
<tr>
<td></td>
<td>Component G</td>
<td>XMEAS(35)</td>
</tr>
<tr>
<td></td>
<td>Component H</td>
<td>XMEAS(36)</td>
</tr>
<tr>
<td>Product analysis</td>
<td>Component D</td>
<td>XMEAS(37)</td>
</tr>
<tr>
<td></td>
<td>Component E</td>
<td>XMEAS(38)</td>
</tr>
<tr>
<td></td>
<td>Component F</td>
<td>XMEAS(39)</td>
</tr>
<tr>
<td></td>
<td>Component G</td>
<td>XMEAS(40)</td>
</tr>
<tr>
<td></td>
<td>Component H</td>
<td>XMEAS(41)</td>
</tr>
</tbody>
</table>
the faults. It is thus very helpful for the data-driven study. It is worth to remark that the data sets once generated by Chiang et al. are widely accepted for process monitoring and fault diagnosis research, in which 22 training sets, including 21 faulty and normal operating conditions, were collected to record the process measurements for 24 operation hours. In order to ensure a comparable investigation, in our study the simulator is parameterized in the base operating mode which is comparable with the case considered by Chiang et al.

Note that there are numerous control schemes and structures applied to the TEP simulation. The simulator provided by Ricker simulates the closed loop behavior of the TEP with a decentralized control strategy, which is different from the one adopted by Chiang et al. for the generation of their simulation data.

2.3.2 Simulated Faults in TEP

In the process monitoring and fault diagnosis study, the 21 faults listed in Table 2.5 are considered. These faults mainly affect process variables, reaction kinetics, feed concentration and actuators such as pump valves. Correspondingly, 22 (on-line) test data sets including 48 h plant operation time have been generated in the work.
by Chiang et al., where the faults were introduced after 8 simulation hours. By considering the time constants of the process in closed loop, the sampling time was selected as 3 min.

2.4 Notes and references

In this chapter, we have introduced three case and application examples. The first two systems, three-tank system DTS200 and continuous stirred tank heater, a product of the company G.U.N.T. Gerätebau GmbH, are laboratory test beds. For the technical details, the reader is referred to the practical instructions, [1] for DTS200 and [2] for CSTH. It is worth mentioning that a similar CSTH setup has been introduced in [3] for the purpose of benchmark study.

The TEP simulation has first been published by Downs and Fogel in 1993 [4]. In their book on fault detection and diagnosis in industrial systems [5], Chiang et al. have systematically studied process monitoring and fault diagnosis problems on the TEP simulator. For this purpose, 22 training data sets have been generated, which include 21 faulty and the normal operating conditions. These data sets have been available from the Internet and widely adopted by the control and fault diagnosis communities, in particular as a benchmark process for the comparison studied, for instance the work reported in [6]. Ricker has developed a Simulink TEP simulator and presented a control scheme applied to the TEP in [7]. The simulator can be downloaded at his website.

As mentioned previously, a further motivation for introducing these three application cases is that they will serve as application examples for illustrating and demonstrating the results of our study in the forthcoming chapters.

References

1. AMIRA (1996) Three-tank-system DTS200, Practical Instructions. AMIRA, Duisburg
Data-driven Design of Fault Diagnosis and Fault-tolerant Control Systems
Ding, S.X.
2014, XX, 300 p. 106 illus., 101 illus. in color., Hardcover
ISBN: 978-1-4471-6409-8