Contents

1 Sets, Relations, and Functions ... 1
 1.1 Introduction .. 1
 1.2 Sets and Collections .. 1
 1.3 Relations and Functions .. 6
 1.3.1 Cartesian Products of Sets 6
 1.3.2 Relations .. 7
 1.3.3 Functions .. 12
 1.3.4 Finite and Infinite Sets 19
 1.3.5 Generalized Set Products and Sequences 21
 1.3.6 Equivalence Relations 26
 1.3.7 Partitions and Covers 28
 1.4 Countable Sets .. 31
 1.5 Multisets ... 33
 1.6 Operations and Algebras 35
 1.7 Morphisms, Congruences, and Subalgebras 39
 1.8 Closure and Interior Systems 42
 1.9 Dissimilarities and Metrics 47
 1.10 Rough Sets ... 50
 1.11 Closure Operators and Rough Sets 54
 References .. 66

2 Partially Ordered Sets .. 67
 2.1 Introduction ... 67
 2.2 Partial Orders .. 67
 2.3 The Poset of Real Numbers 74
 2.4 Chains and Antichains ... 76
 2.5 Poset Product .. 82
 2.6 Functions and Posets .. 85
 2.7 The Poset of Equivalences and the Poset of Partitions 87
 2.8 Posets and Zorn’s Lemma 89
 References .. 95
3 Combinatorics .. 97
 3.1 Introduction .. 97
 3.2 Permutations .. 97
 3.3 The Power Set of a Finite Set 101
 3.4 The Inclusion–Exclusion Principle 104
 3.5 Locally Finite Posets and Möbius Functions 106
 3.6 Ramsey’s Theorem 114
 3.7 Combinatorics of Partitions 117
 3.8 Combinatorics of Collections of Sets 119
 3.9 The Vapnik-Chervonenkis Dimension 125
 3.10 The Sauer–Shelah Theorem 128
References ... 147

4 Topologies and Measures 149
 4.1 Introduction ... 149
 4.2 Topologies .. 149
 4.3 Closure and Interior Operators in Topological Spaces 151
 4.4 Bases .. 159
 4.5 Compactness 162
 4.6 Continuous Functions 164
 4.7 Connected Topological Spaces 167
 4.8 Separation Hierarchy of Topological Spaces 170
 4.9 Products of Topological Spaces 172
 4.10 Fields of Sets 174
 4.11 Measures ... 179
References ... 195

5 Linear Spaces ... 197
 5.1 Introduction ... 197
 5.2 Linear Mappings 202
 5.3 Matrices .. 206
 5.4 Rank ... 224
 5.5 Multilinear Forms 236
 5.6 Linear Systems 240
 5.7 Determinants 242
 5.8 Partitioned Matrices and Determinants 257
 5.9 The Kronecker and Hadamard products 260
 5.10 Topological Linear Spaces 263
References ... 279

6 Norms and Inner Products 281
 6.1 Introduction ... 281
 6.2 Inequalities on Linear Spaces 281
 6.3 Norms on Linear Spaces 284
6.4 Inner Products ... 290
6.5 Orthogonality .. 295
6.6 Unitary and Orthogonal Matrices, 301
6.7 The Topology of Normed Linear Spaces 305
6.8 Norms for Matrices ... 311
6.9 Projection on Subspaces 318
6.10 Positive Definite and Positive Semidefinite Matrices . 324
6.11 The Gram-Schmidt Orthogonalization Algorithm 331
References ... 345

7 Spectral Properties of Matrices 347
7.1 Introduction ... 347
7.2 Eigenvalues and Eigenvectors 347
7.3 Geometric and Algebraic Multiplicities of Eigenvalues .. 355
7.4 Spectra of Special Matrices 357
7.5 Variational Characterizations of Spectra 363
7.6 Matrix Norms and Spectral Radii 370
7.7 Singular Values of Matrices 372
References ... 397

8 Metric Spaces Topologies and Measures 399
8.1 Introduction ... 399
8.2 Metric Space Topologies 399
8.3 Continuous Functions in Metric Spaces 402
8.4 Separation Properties of Metric Spaces 404
8.5 Sequences in Metric Spaces 411
8.5.1 Sequences of Real Numbers 412
8.6 Completeness of Metric Spaces 415
8.7 Contractions and Fixed Points 420
8.7.1 The Hausdorff Metric Hyperspace of Compact Subsets .. 422
8.8 Measures in Metric Spaces 425
8.9 Embeddings of Metric Spaces 428
References ... 433

9 Convex Sets and Convex Functions 435
9.1 Introduction ... 435
9.2 Convex Sets ... 435
9.3 Convex Functions .. 441
9.3.1 Convexity of One-Argument Functions 443
9.3.2 Jensen’s Inequality 446
References ... 455
10 Graphs and Matrices .. 457
 10.1 Introduction .. 457
 10.2 Graphs and Directed Graphs 457
 10.2.1 Directed Graphs .. 466
 10.2.2 Graph Connectivity 470
 10.2.3 Variable Adjacency Matrices 474
 10.3 Trees ... 478
 10.4 Bipartite Graphs .. 493
 10.5 Digraphs of Matrices 501
 10.6 Spectra of Non-negative Matrices 504
 10.7 Fiedler’s Classes of Matrices 508
 10.8 Flows in Digraphs ... 517
 10.9 The Ordinary Spectrum of a Graph 524
References .. 538

11 Lattices and Boolean Algebras 539
 11.1 Introduction .. 539
 11.2 Lattices as Partially Ordered Sets and Algebras 539
 11.3 Special Classes of Lattices 546
 11.4 Complete Lattices ... 553
 11.5 Boolean Algebras and Boolean Functions 556
References .. 581

12 Applications to Databases and Data Mining 583
 12.1 Introduction .. 583
 12.2 Relational Databases .. 583
 12.3 Partitions and Functional Dependencies 590
 12.4 Partition Entropy .. 598
 12.5 Generalized Measures and Data Mining 614
 12.6 Differential Constraints 618
 12.7 Decision Systems and Decision Trees 624
 12.8 Logical Data Analysis 631
 12.9 Perceptrons .. 639
References .. 645

13 Frequent Item Sets and Association Rules 647
 13.1 Introduction .. 647
 13.2 Frequent Item Sets .. 647
 13.3 Borders of Collections of Sets 653
 13.4 Association Rules .. 655
 13.5 Levelwise Algorithms and Posets 657
 13.6 Lattices and Frequent Item Sets 662
References .. 668
Mathematical Tools for Data Mining
Set Theory, Partial Orders, Combinatorics
Simovici, D.; Djeraba, C.
2014, XI, 831 p. 93 illus., Hardcover
ISBN: 978-1-4471-6406-7