Contents

1 Introduction ... 1
 1.1 Introduction ... 1
 1.2 Microstructure and Texture ... 2
 1.3 Description of Grain Orientation and Texture 3
 1.4 Development of Texture During Processing 5
 1.5 Macro- and Microtexture .. 6
 1.6 Industrial Importance of Texture 6
References ... 9

2 Representation of Texture .. 11
 2.1 Introduction ... 11
 2.2 Pole Figure Method .. 11
 2.2.1 Stereographic Projection 12
 2.2.2 Pole Figure .. 14
 2.2.3 Interpretation of a Pole Figure 16
 2.2.4 Pole Figures Showing Ideal Orientations 18
 2.2.5 Pole Figures Showing Fiber Texture 20
 2.2.6 Inverse Pole Figures .. 21
 2.3 Orientation Distribution Function (ODF) Method 22
 2.3.1 Description of an Orientation by the Euler Angles φ_1, Φ, and φ_2 24
 2.3.2 The Orientation Distribution Function 26
 2.3.3 Pole Figure Inversion Using Series Expansion 27
 2.3.4 Problems with the Series Expansion Method 28
 2.3.5 Pole Figure Inversion Using Direct Methods 29
 2.4 Representation of Texture in the Orientation Space 30
 2.5 Volume Fraction of Texture Components 34
References ... 37
3 Experimental Determination of Texture

3.1 Introduction 39
3.2 Macrotexture Measurement Techniques 41
 3.2.1 Texture Measurement by X-ray Diffraction 41
 3.2.2 Texture Measurement Using Synchrotron X-rays 57
3.3 Microtexture Measurement Techniques 58
 3.3.1 Scanning Electron Microscopy-Based Electron Backscattered Diffraction (SEM-EBSD) 58
 3.3.2 Transmission Electron Microscopy-Based Orientation Imaging Microscopy (TEM-OIM) 67
References .. 70

4 Texture Evolution During Solidification and Solid-State Transformation

4.1 Introduction 73
4.2 Solidification Texture in Metals and Alloys 73
 4.2.1 Origin of Solidification Texture 76
 4.2.2 Mechanism of Formation of Solidification Texture in the Columnar Zone 78
 4.2.3 Some Examples of Texture Control During Solidification 80
4.3 Transformation Texture 84
 4.3.1 Transformation Textures in Steels 84
 4.3.2 Transformation Textures in Titanium and Zirconium Alloys 88
References .. 92

5 Deformation Textures 95
5.1 Introduction 95
5.2 Crystallography of Deformation 95
5.3 Deformation Microstructures 102
 5.3.1 Crystallographic Dependence of Microstructural Features 104
5.4 Deformation Textures in Metals and Alloys 108
 5.4.1 Rolling Textures 108
 5.4.2 Texture After Uniaxial Deformation 123
 5.4.3 Shear Texture 128
5.5 Modeling and Prediction of Deformation Texture 128
 5.5.1 The Sachs Model 130
 5.5.2 The Taylor Model 131
 5.5.3 Relaxed Constraint Models 132
 5.5.4 More Recent Models 133
References .. 137
6 Annealing Texture

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1 Introduction</td>
<td>143</td>
</tr>
<tr>
<td>6.2 Stored Energy of Cold Work: A Precursor to the Annealing Process</td>
<td>143</td>
</tr>
<tr>
<td>6.3 Release of Stored Energy During Annealing</td>
<td>144</td>
</tr>
<tr>
<td>6.4 Primary Recrystallization</td>
<td>147</td>
</tr>
<tr>
<td>6.4.1 Nucleation of Recrystallized Grains</td>
<td>147</td>
</tr>
<tr>
<td>6.4.2 Role of Lattice Curvature in Recrystallization</td>
<td>151</td>
</tr>
<tr>
<td>6.4.3 Grain Boundary Migration and Its Orientation Dependence</td>
<td>152</td>
</tr>
<tr>
<td>6.5 Recrystallization Textures</td>
<td>154</td>
</tr>
<tr>
<td>6.5.1 Recrystallization Textures of FCC Metals and Alloys</td>
<td>155</td>
</tr>
<tr>
<td>6.5.2 Recrystallization Textures of BCC Metals and Alloys</td>
<td>163</td>
</tr>
<tr>
<td>6.5.3 Recrystallization Textures of Hexagonal Metals and Alloys</td>
<td>164</td>
</tr>
<tr>
<td>6.5.4 Recrystallization Textures in Two-phase Alloys</td>
<td>166</td>
</tr>
<tr>
<td>6.6 Texture Evolution During Dynamic Recovery and Recrystallization</td>
<td>166</td>
</tr>
<tr>
<td>6.7 Theories of Formation of Recrystallization Textures</td>
<td>166</td>
</tr>
<tr>
<td>6.7.1 The Oriented-Nucleation Theory</td>
<td>167</td>
</tr>
<tr>
<td>6.7.2 The Oriented-Growth Theory</td>
<td>168</td>
</tr>
<tr>
<td>6.7.3 Orientation Pinning Theory</td>
<td>169</td>
</tr>
<tr>
<td>6.7.4 The Oriented Energy Gain Theory</td>
<td>170</td>
</tr>
<tr>
<td>6.7.5 Relative Roles of Oriented Nucleation and Oriented Growth</td>
<td>170</td>
</tr>
<tr>
<td>6.8 The Cube Texture in FCC Metals: A Classic Example of Recrystallization Texture</td>
<td>171</td>
</tr>
</tbody>
</table>

References ... 173

7 Texture Evolution in Thin Films

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1 Introduction</td>
<td>179</td>
</tr>
<tr>
<td>7.2 Representation of Texture in Thin Films</td>
<td>180</td>
</tr>
<tr>
<td>7.3 Texture Measurement in Thin Films</td>
<td>182</td>
</tr>
<tr>
<td>7.4 Mechanism of Texture Formation in Thin Films</td>
<td>184</td>
</tr>
<tr>
<td>7.5 Stages of Texture Formation in Thin Films</td>
<td>184</td>
</tr>
<tr>
<td>7.5.1 Texture Formation During Pre-coalescence Stage</td>
<td>184</td>
</tr>
<tr>
<td>7.5.2 Texture Formation During Coalescence Stage</td>
<td>185</td>
</tr>
<tr>
<td>7.5.3 Texture Formation During Post-coalescence Stage</td>
<td>185</td>
</tr>
<tr>
<td>7.5.4 Texture Formation During Post-deposition Annealing Stage</td>
<td>186</td>
</tr>
<tr>
<td>7.6 Texture Developed During Various Methods of Film Deposition</td>
<td>186</td>
</tr>
<tr>
<td>7.7 Texture in Conducting Films: Electromigration and Texture</td>
<td>188</td>
</tr>
<tr>
<td>7.8 Textures in Magnetic Films</td>
<td>190</td>
</tr>
</tbody>
</table>
7.9 Texture in a Few Other Industrially Important Thin Films 190
7.10 Effect of Ion Irradiation on Texture of Thin Films 191
References .. 191

8 Textures of Non-metals .. 195
8.1 Introduction ... 195
8.2 Textures in Ceramics .. 196
 8.2.1 Alumina .. 197
 8.2.2 Zirconia .. 197
 8.2.3 Silicon Nitride .. 198
 8.2.4 Composite Ceramics .. 198
 8.2.5 Electric and Magnetic Ceramics ... 199
 8.2.6 High Tc Superconductors ... 199
 8.2.7 Ceramic Coating .. 199
8.3 Texture in Geological Materials .. 200
8.4 Textures in Crystalline Polymeric Materials ... 200
8.5 Textures in Semicrystalline Polymers ... 201
References .. 202

9 Texture and Properties ... 207
9.1 Introduction ... 207
9.2 Texture Dependence of Mechanical Properties 207
 9.2.1 Texture and Elastic Modulus .. 208
 9.2.2 Texture and Yield Strength .. 210
 9.2.3 Texture and r-Value ... 212
 9.2.4 Texture and Fracture ... 216
 9.2.5 Texture and Fatigue .. 216
 9.2.6 Texture and Stress-Corrosion Cracking .. 219
9.3 Texture Dependence of Magnetic and Electrical Properties 219
 9.3.1 Magnetic Properties ... 219
 9.3.2 Electrical Properties .. 221
9.4 Texture Dependence of Chemical Properties .. 222
 9.4.1 Texture and Corrosion .. 222
 9.4.2 Texture and Oxidation .. 222
References .. 223

10 Texture Control in Some Engineering Materials 225
10.1 Introduction ... 225
10.2 Texture Control in Cold-Rolled and Annealed Low-Carbon Sheet Steels .. 225
 10.2.1 Batch Annealed Al-killed Steels .. 226
 10.2.2 Continuous Annealed Low-Carbon Steels 228
 10.2.3 Interstitial Free Steels .. 230
 10.2.4 Interstitial Free High Strength Steels ... 232
Crystallographic Texture of Materials
Suwas, S.; Ray, R.K.
2014, XIII, 260 p. 157 illus., 5 illus. in color., Hardcover
ISBN: 978-1-4471-6313-8