Contents

1 Introduction .. 1

Part I Deterministic Systems

2 Background on Sampling of Signals 7
 2.1 Fourier Analysis .. 7
 2.2 Sampling of Continuous-Time Signals and Continuous Transforms 9
 2.3 Signal Reconstruction from Samples 15
 2.4 Anti-aliasing Filters 17
 2.5 Summary ... 18
 Further Reading .. 19

3 Sampled-Data Models for Linear Deterministic Systems 21
 3.1 Continuous-Time Model 21
 3.2 The Hold Device ... 24
 3.3 The Sampled-Data Model 24
 3.4 Poles and Zeros .. 31
 3.5 Relative Degree ... 32
 3.6 Summary .. 37
 Further Reading .. 37

4 Incremental Sampled-Data Models 39
 4.1 Sampled-Data Models for Fast Sampling Rates 39
 4.2 The Delta Operator 40
 4.3 Relative Degree Revisited 43
 4.4 Summary .. 44
 Further Reading .. 45

5 Asymptotic Sampling Zeros 47
 5.1 Pure Integrator Model 47
 5.2 General Linear Systems 55
 5.3 Summary .. 57
 Further Reading .. 58
6 Generalised Hold Devices 59
 6.1 Generalised Hold Functions 59
 6.2 Asymptotic Sampling Zeros for Generalised Holds 63
 6.3 Summary 69
 Further Reading 70

7 Robustness ... 73
 7.1 Robustness of Asymptotic Sampled-Data Models .. 73
 7.2 Robustness of Generalised Hold Designs 75
 7.3 Summary 77
 Further Reading 77

8 Approximate Models for Linear Deterministic Systems 79
 8.1 Approximate Models in the Frequency Domain 79
 8.1.1 Error Quantification in the Frequency Domain . 80
 8.1.2 Approximate Models Based on Euler Integration . 82
 8.1.3 Approximate Models Using Asymptotic Sampling Zeros . 85
 8.2 Approximate Models in the Time Domain 90
 8.2.1 Approximate Models Based on Up-Sampling 90
 8.2.2 Approximate Models Based on Truncated Taylor Series . 92
 8.2.3 Approximate Models Based on Near Euler Integration ... 92
 8.2.4 Normal Forms for Linear Systems 92
 8.2.5 Variable Truncated Taylor Series Model 94
 8.3 Summary 98
 Further Reading 98

9 Approximate Models for Nonlinear Deterministic Systems ... 101
 9.1 Approximate Models Based on Up-Sampling 101
 9.2 Normal Forms for Nonlinear Systems 102
 9.3 Variable Truncated Taylor Series Model 104
 9.4 Approximation Errors for Nonlinear Sampled Models . 105
 9.4.1 Links to Numerical Analysis 106
 9.4.2 Local and Global Truncation Errors 106
 9.4.3 Truncation Errors for the TTS Model 108
 9.5 Summary 114
 Further Reading 114

10 Applications of Approximate Sampled-Data Models in Estimation and Control 117
 10.1 When Are Deterministic Sampling Zeros Important? ... 117
 10.2 State Feedback Control for Linear Systems 118
 10.3 State Estimation for Linear Systems 119
 10.4 Output Feedback Control for Linear Systems 120
 10.5 Sampled-Data State Feedback Control for Nonlinear Systems ... 121
 10.6 Continuous-Time System Identification 125
 10.7 Predictive Control of an Electrical Machine 130
 10.8 Summary 134
 Further Reading 135
Part II Stochastic Systems

11 Background on Sampling of Stochastic Signals 139
 11.1 Continuous-Time Stochastic Processes 139
 11.2 Power Spectral Density of a Sampled Process 142
 11.3 Anti-aliasing Filtering 144
 11.4 Summary ... 146
 Further Reading .. 146

12 Sampled-Data Models for Linear Stochastic Systems 149
 12.1 Continuous-Time Stochastic Linear Systems 149
 12.2 Sampled-Data Model for Systems Having Relative Degree
 Greater than Zero 151
 12.3 Sampled-Data Models for Systems Having Averaging Filter 152
 12.4 Summary ... 155
 Further Reading .. 156

13 Incremental Stochastic Sampled-Data Models 157
 13.1 Incremental Model 157
 13.2 Incremental Model for Instantaneously Sampled Systems 158
 13.3 Incremental Model for Sampled Systems with Averaging AAF 159
 13.4 Output Power Spectral Density 161
 13.5 Simple Connections Between Continuous-Time
 and Discrete-Time PSDs 163
 13.6 Summary ... 166
 Further Reading .. 167

14 Asymptotic Sampling Zeros for Linear Stochastic Systems 169
 14.1 Discrete-Time PSDs Corresponding to Simple Continuous-Time
 Systems ... 169
 14.1.1 First Order System Having Relative Degree 1 169
 14.1.2 Second Order System Having Relative Degree 2 170
 14.2 Asymptotic Sampling Zeros of the Output Power Spectral Density 172
 14.3 Relating Deterministic and Stochastic Sampling Zeros 174
 14.4 Asymptotic Sampling Zeros via Time-Domain Arguments ... 175
 14.5 Summary ... 180
 Further Reading .. 180

15 Generalised Sampling Filters 181
 15.1 Sampled-Data Models when Generalised Sampling Filters Are
 Deployed ... 181
 15.2 Generalised Filters to Assign the Asymptotic Sampling Zeros ... 186
 15.2.1 First Order Systems 187
 15.2.2 Second Order Systems 189
 15.3 Robustness Issues 191
 15.4 Summary ... 192
 Further Reading .. 193
16 Approximate Sampled-Data Models for Linear Stochastic Systems
16.1 Adding the Sampling Zeros in the Frequency Domain 195
16.2 Approximate Sampled-Data Model Based on Up-Sampling ... 198
16.3 Approximate Stochastic Sampled-Data Models Based on Successive Integration 200
16.4 Stochastic Sampling Zeros Revisited 201
16.5 Summary ... 207
Further Reading ... 207

17 Stochastic Nonlinear Systems 209
17.1 Background on Stochastic Differential Equations 209
17.2 The Ito Rule ... 211
17.3 Ito–Taylor Expansions 213
17.4 Numerical Solution of SDEs 217
17.5 Accuracy of Numerical Solutions 217
17.6 Summary ... 219
Further Reading ... 219

18 Approximate Sampled-Data Models for Nonlinear Stochastic Systems ... 221
18.1 Approximate Sampled-Data Models Based on Up-Sampling ... 221
18.2 Approximate Sampled-Data Models Based on Successive Integration ... 222
18.3 Sampling Zero Dynamics for Stochastic Nonlinear Systems 226
18.4 Summary ... 231
Further Reading ... 231

19 Applications of Approximate Stochastic Sampled-Data Models .. 233
19.1 When Are Stochastic Sampling Zeros Important? 233
19.2 Models for System Identification 233
19.3 Effect of Sampling Zeros in Stochastic System Identification 234
19.4 Restricted Bandwidth Estimation 236
19.5 Identification of Continuous-Time State-Space Models from Nonuniformly Fast-Sampled Data 239
19.5.1 Continuous-Time System Description 240
19.5.2 Sampled-Data Model 241
19.5.3 Maximum Likelihood Identification and the EM Algorithm ... 243
19.5.4 EM Algorithm ... 243
19.6 Summary ... 249
Further Reading ... 249

Part III Embellishments and Extensions

20 The Euler–Frobenius Polynomials 253
20.1 Euler–Frobenius Polynomials 253
20.2 Euler–Frobenius Numbers 255
20.3 Euler–Frobenius Fractions 256
20.4 Combinatorial Interpretation of Eulerian Numbers 257
20.5 Euler and Bernoulli Polynomials 258
20.6 Generalised Eulerian Polynomials 260
20.7 Summary ... 262
Further Reading ... 262

21 Models for Intersample Response 265
21.1 Frequency Domain ... 265
21.2 Time Domain ... 268
21.3 Summary ... 269
Further Reading ... 269

22 Approximate Sampled-Data Models for Fractional Order Systems 271
22.1 Historical Perspective ... 271
22.2 Fractional Calculus Background 272
22.3 Sampling Zeros for Fractional Order Systems 273
22.4 Approximate Discrete-Time Models............................. 282
22.5 Summary ... 284
Further Reading ... 285

Index ... 287
Sampled-Data Models for Linear and Nonlinear Systems
Yuz, J.; Goodwin, G.C.
2014, XVII, 289 p. 48 illus., 44 illus. in color., Hardcover
ISBN: 978-1-4471-5561-4